【題目】已知反比例函數(shù)y與一次函數(shù)ykx+b的圖象相交于點(diǎn)A4,1),Ba,2)兩點(diǎn),一次函數(shù)的圖象與y軸交于點(diǎn)C,點(diǎn)Dx軸上,其坐標(biāo)為(1,0),則△ACD的面積為(  )

A.12B.9C.6D.5

【答案】D

【解析】

先求出反比例函數(shù)和一次函數(shù)的解析式,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求得點(diǎn)C的坐標(biāo);然后由SACD=S梯形AEOC-SCOD-SDEA進(jìn)行解答.

解:∵點(diǎn)A4,1)在反比例函數(shù)y上,

mxy4×14,

y

Ba,2)代入y

2

a2,

B2,2).

∵把A4,1),B2,2)代入ykx+b

,解得,

∴一次函數(shù)的解析式為

∵點(diǎn)C在直線上,

∴當(dāng)x0時(shí),y3,

C03

AAEx軸于E

SACDS梯形AEOCSCODSDEA

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°ABAC,BC4,點(diǎn)DAC邊上一動(dòng)點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線段CE長(zhǎng)度的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半⊙O中,AB是直徑,點(diǎn)D⊙O上一點(diǎn),點(diǎn)C的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P△ACQ的外心;④AC2=CQCB,其中結(jié)論正確的是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yk≠0x0)的圖象與矩形OABC的邊AB、BC分別交于點(diǎn)E、F,E6),且EBC的中點(diǎn),Dx軸負(fù)半軸上的點(diǎn).

1)求反比倒函數(shù)的表達(dá)式和點(diǎn)F的坐標(biāo);

2)若D(﹣,0),連接DE、DF、EF,則DEF的面積是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90°,D為邊AC上的點(diǎn),AD為直徑作⊙O,連接BD并延長(zhǎng)交⊙O于點(diǎn)E,連接CE.

(1)CE=BC,求證:CE是⊙O的切線.

(2)(1)的條件下,CD=2,BC=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方方駕駛小汽車勻速地從A地行使到B地,行駛里程為480千米,設(shè)小汽車的行使時(shí)間為t(單位:小時(shí)),行使速度為v(單位:千米/小時(shí)),且全程速度限定為不超過120千米/小時(shí).

⑴求v關(guān)于t的函數(shù)表達(dá)式;

⑵方方上午8點(diǎn)駕駛小汽車從A出發(fā).

①方方需在當(dāng)天12點(diǎn)48分至14點(diǎn)(含12點(diǎn)48分和14點(diǎn))間到達(dá)B地,求小汽車行駛速度v的范圍.

②方方能否在當(dāng)天11點(diǎn)30分前到達(dá)B地?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來;

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤(rùn)為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax+bx+c的圖象如圖所示,下列結(jié)論:①abc>0;b<a+c;4a+2b+c>0;a+b+c>m(am+b)+c(m1的實(shí)數(shù)),其中正確的結(jié)論有 ( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案