應(yīng)用題:有一石拱橋的橋拱是圓弧形,當(dāng)水面到拱頂?shù)木嚯x小于3.5米時(shí),需要采取緊急措施.如圖所示,正常水位下水面寬AB=60米,水面到拱頂?shù)木嚯x18米.
①求圓弧所在圓的半徑.
②當(dāng)洪水泛濫,水面寬MN=32米時(shí),是否需要采取緊急措施?計(jì)算說明理由.
(1)找出圓心O與弧AB的中點(diǎn)C交AB與D,
連接OA,
根據(jù)垂徑定理得OD⊥AB,AD=BD,
∵AB=60,CD=18,⊙O的半徑為R,
在Rt△ADO中,R2=302+(R-18)2…3′
解之得:R=34…5′
(2)連接ON,根據(jù)垂徑定理得OE⊥MN,ME=NE
在Rt△ONE中,342=162+OE2…8′
∴OE=30…9′
∴CE=34-30=4>3.5
∴沒有危險(xiǎn),不需要采取緊急措施.…10′
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為
2
-1,直線l:y=-x-
2
與坐標(biāo)軸分別交于A、C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1),⊙B與x軸相切于點(diǎn)M.
(1)求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個(gè)單位長度的速度沿想x軸負(fù)方向平移,同時(shí),直線l繞點(diǎn)A以每秒鐘旋轉(zhuǎn)30°的速度順時(shí)針勻速旋轉(zhuǎn),當(dāng)⊙B第一次與⊙O相切時(shí),請判斷直線ι與⊙B的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用工件槽(如圖1)可以檢測一種鐵球的大小是否符合要求,已知工件槽的兩個(gè)底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時(shí),若同時(shí)具有圖1所示的A、B、E三個(gè)接觸點(diǎn),該球的大小就符合要求.圖2是過球心O及A、B、E三點(diǎn)的截面示意圖,求這種鐵球的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,公路MN和公路PQ在點(diǎn)P處交會(huì),且∠QPN=30°.點(diǎn)A處有一所中學(xué),AP=160m,一輛拖拉機(jī)從P沿公路MN前行,假設(shè)拖拉機(jī)行駛時(shí)周圍100m以內(nèi)會(huì)受到噪聲影響,那么該所中學(xué)是否會(huì)受到噪聲影響,請說明理由,若受影響已知拖拉機(jī)的速度為18km/h,那么學(xué)校受影響的時(shí)間為多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面坐標(biāo)系中,以點(diǎn)(0,1)為圓心,2為半徑的圓與x軸的正半軸交于點(diǎn)A,則A點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O中,弦AB=12cm,O點(diǎn)到AB的距離等于AB的一半,則∠AOB的度數(shù)為______°,圓的半徑為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的直徑,且AB=10,弦MN的長為8,若弦MN的兩端在圓周上滑動(dòng)時(shí),始終與AB相交.設(shè)A,B到MN的距離為h1,h2.則|h1-h2|=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(一)所示的紙片是半徑為10cm的圓形紙片的一部分,且弦AB的長為10
3
cm.
(1)請你用直尺、圓規(guī)找出該圓的圓心O,并求弦AB所對(duì)的圓心角的度數(shù);
(2)請問能否利用該紙片制作出如圖(二)所示的無底冰淇淋紙筒,并說明理由.
(注:①保留作圖痕跡,并用0.5黑水筆描粗;②圖(2)中的冰淇淋紙筒的尺寸為:底面直徑為12cm,高為8cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

AB是⊙O的弦,P是AB上一點(diǎn),PA=4,PB=6,PO=5,則⊙O的半徑為( 。
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊答案