如圖:矩形ABCD的對(duì)角線AC=8cm,∠CAD=15°,則矩形ABCD的面積S=______cm2
如圖:取∠DCE=60°,CE交AD于E,
∵四邊形ABCD是矩形,
∴∠D=∠BCD=90°,
∵∠CAD=15°,
∴∠ACD=75°,
∴∠ACE=∠ACD-∠DCE=75°-60°=15°,
∴∠ACE=∠CAD,
∴AE=CE,∠DEC=∠EAC+∠ECA=30°,
在Rt△DCE中,EC=2DC,
DE=
DC
tan∠DEC
=
DC
tan30°
=
3
DC,
設(shè)DC=xcm,則DE=
3
xcm,AE=EC=2xcm,
∴AD=AE+DE=(2+
3
)xcm,
在Rt△ACD中,AD2+CD2=AC2,
∵AC=8cm,
∴[(2+
3
)x]2+x2=64,
解得:x2=32-16
3
,
∴矩形ABCD的面積S=AD•CD=(2+
3
)x2=(2+
3
)(32-16
3
)=16(cm2).
故答案為:16.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有一個(gè)長(zhǎng)為15米,寬為10米的長(zhǎng)方形草地,在草地中間有一條彎曲的小路,小路的任何地方的寬度都是1米,那么這片草地的綠化面積是______平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在矩形ABCD中,AB=a,AD=2b(a>2b>0),E是AD的中點(diǎn),BF⊥EC,垂足為F,求BF的長(zhǎng)(用含有a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的對(duì)角線AC、BC相交于點(diǎn)O,BEAC,CEDB.求證:四邊形OBEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD的對(duì)角線交于O點(diǎn),∠AOB=120°,AD=5cm,則AC=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知關(guān)于x的方程x2-(k+1)x+
1
4
k2+1=0
的兩根是一個(gè)矩形兩條鄰邊的長(zhǎng),那么當(dāng)k=______時(shí),矩形的對(duì)角線長(zhǎng)為
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MNBC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點(diǎn)P在矩形上方,點(diǎn)Q在矩形內(nèi)
(1)求∠PCQ的度數(shù);
(2)求證:∠APB=∠QPC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,十三個(gè)邊長(zhǎng)為正整數(shù)的正方形紙片恰好拼成一個(gè)大矩形(其中有三個(gè)小正方形的邊長(zhǎng)已標(biāo)出字母x,y,z).試求滿足上述條件的矩形的面積最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案