【題目】如圖,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度數(shù).

【答案】解:設(shè)∠1為x, ∵∠1=∠2,
∴∠2=x,
∴∠DBC=∠1+∠2=2x,
∵∠D:∠DBC=2:1,
∴∠D=2×2x=4x,
∵DE∥BC,
∴∠D+∠DBC=180°,
即2x+4x=180°,
解得x=30°,
∵DE∥BC,
∴∠DEB=∠1=30°.
【解析】設(shè)∠1為x,所以∠DBC為2x,∠D為4x,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)列出方程即可求出∠1的度數(shù),再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等即可求出∠DEB.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的性質(zhì)的相關(guān)知識(shí),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當(dāng)∠CAE等于多少度時(shí)△ABC是等邊三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(y-x)2n-1(x-y)2n=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機(jī)抽查了10名參加2016年云南省初中學(xué)業(yè)水平考試學(xué)生的體育成績(jī),得到的結(jié)果如表:

成績(jī)(分)

46

47

48

49

50

人數(shù)(人)

1

2

1

2

4

下列說法正確的是(
A.這10名同學(xué)的體育成績(jī)的眾數(shù)為50
B.這10名同學(xué)的體育成績(jī)的中位數(shù)為48
C.這10名同學(xué)的體育成績(jī)的方差為50
D.這10名同學(xué)的體育成績(jī)的平均數(shù)為48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線y= 在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為(

A.y=
B.y=
C.y=﹣
D.y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.

(1)求證:AB是⊙O的切線;

(2)若CF=4,DF=,求⊙O的半徑r及sinB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1+2+3+…+n=a,求代數(shù)式(xny)(xn-1y2)(xn-2y3)…(x2yn-1)(xyn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年3月份某周,我市每天的最高氣溫(單位:℃12,9,106,1112,17,則這組數(shù)據(jù)的中位數(shù)與極差分別是( )

A.8,11B.817C.11,11D.11,17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:用2輛A型車和1輛B型車載滿貨物一次可運(yùn)貨10噸;用1輛A型車和2輛B型車載滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車a輛,B型車b輛,一次運(yùn)完,且恰好每輛車都載滿貨物.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛車B型車都載滿貨物一次可分別運(yùn)貨多少噸?
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請(qǐng)選出最省錢的租車方案,并求出最少租車費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案