【題目】如圖所示, 在平面直角坐標(biāo)系中, 邊長為的正方形的邊在軸上, 交軸于點(diǎn),一次函數(shù)的圖像經(jīng)過點(diǎn),且與線段始終有交點(diǎn)(含端點(diǎn)),若,則的值可能為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)正方形的邊長與BO=2CO,求得B、C兩點(diǎn)坐標(biāo),再求得A、F的坐標(biāo),把C點(diǎn)坐標(biāo)代入y=kx+b中,得b關(guān)于k的代數(shù)式,得到新解析式,然后把y=3代入新解析式,求得x關(guān)于k的代數(shù)式,再根據(jù)直線y=kx+b與線段AF始終有交點(diǎn)(含端點(diǎn)),由此時(shí)交點(diǎn)的橫坐標(biāo)的取值范圍列出k的不等式組,便可求得k的取值范圍,進(jìn)而得解.
∵BC=3,BO=2CO,
∴OC=1,OB=2,
∴B(2,0),C(1,0),
∴A(2,3),F(0,3),
把C(1,0)代入y=kx+b(k≠0)中,得b=k,
∴一次函數(shù)為y=kxk,
當(dāng)y=3時(shí),kxk=3,
∴,
∴直線CE與AF的交點(diǎn)坐標(biāo)為(,3)
∵一次函數(shù)y=kx+b的圖像與線段AF始終有交點(diǎn)(含端點(diǎn)),
∴20,
由函數(shù)圖像知,k<0,
∴2kk+30,
∴3k1,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的⊙O分別與x軸,y軸交于A,D兩點(diǎn),⊙O上兩個(gè)動(dòng)點(diǎn)B,C,使∠BAC=60°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化小區(qū),物業(yè)公司計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)的倍,如果要獨(dú)立完成面積為區(qū)域的綠化,甲隊(duì)比乙隊(duì)少用天.
求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少?
若物業(yè)公司每天需付給甲隊(duì)的綠化費(fèi)用為萬元,需付給乙隊(duì)的費(fèi)用為萬元,要使這次的綠化總費(fèi)用不超過萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請(qǐng)結(jié)合題意填空,完成本題的解答
(1)解不等式①,得___________;
(2)解不等式②,得___________;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,的頂點(diǎn),,均在格點(diǎn)上.
(Ⅰ)的長等于________________;
(Ⅱ)在如圖所示的網(wǎng)格中,將繞點(diǎn)A旋轉(zhuǎn),使得點(diǎn)B的對(duì)應(yīng)點(diǎn)落在邊上,得到,請(qǐng)用無刻度的直尺,畫出,并簡(jiǎn)要說明這個(gè)三角形的各個(gè)頂點(diǎn)是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,
(1) 將向右平移6個(gè)單位長度至, 再將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,請(qǐng)按要求畫出圖形;
(2)在的變換過程中,直接寫出點(diǎn)的運(yùn)動(dòng)路徑長
(3)可看成繞某點(diǎn)旋轉(zhuǎn)得到的, 則點(diǎn)的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線交于A、B兩點(diǎn),連接OA、OB,軸于點(diǎn)M,軸于點(diǎn)N,有以下結(jié)論:①;②;③則;④當(dāng)時(shí),.其中結(jié)論正確的是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小正方形的邊長均為l的方格紙中,有線段AB,BC.點(diǎn)A,B,C均在小正方形的頂點(diǎn)上.
(1)在圖1中畫出四邊形ABCD,四邊形ABCD是軸對(duì)稱圖形,點(diǎn)D在小正方形的項(xiàng)點(diǎn)上:
(2)在圖2中畫四邊形ABCE,四邊形ABCE不是軸對(duì)稱圖形,點(diǎn)E在小正方形的項(xiàng)點(diǎn)上,∠AEC=90°,EC>EA;直接寫出四邊形ABCE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場(chǎng)行情,把新茶價(jià)格定為400元/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1≤x≤15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷售額-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出該茶廠第10天的收入;
(2)設(shè)該茶廠第x天的收入為y(元).試求出y與x之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com