(本題10分)如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落到到B′的位置,AB′與CD交于點E.

(1)求證:△AED≌△CEB′

(2)若AB = 8,DE = 3,點P為線段AC上任意一點,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.

 

(1)證明:∵四邊形ABCD為矩形,∴∠D=∠B′=90°,AD=B′C,

又∵∠DEA=∠B′EC,∴△AED≌△CEB′.……5分

(2)由題意知AE=8-B′E=8-DE=8-3=5.

∴AD==4.又∵∠B′AC=∠BAC,PG⊥AB′,延長HP交AB于點M,則PM⊥AB,∴PM=PG.      ∴PG+PH=PM+PH=HM=AD=4.……10分

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.

1.(1)求點P的坐標.    

2.(2)求△APB的面積.  

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖,P是雙曲線的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,設點P的坐標為(,).

(1)求當為何值時,⊙P與直線相切,并求點P的坐標.

(2)直接寫出當為何值時,⊙P與直線相交、相離.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=- x- 與⊙M相切于點H,交x軸于點E,交y軸于點F.

   1.(1)請直接寫出OE、⊙M的半徑r、CH的長;(3分)

2.(2)如圖1,弦HQ交x軸于點P,且DP:PH=3:2,求COS∠QHC的值;(3分)

3.(3)如圖2,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.(3分)

       

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年湖北武夷山市九年級上學期期末考試數(shù)學卷.doc 題型:解答題

(本題10分)如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京師大附中初一第一學期期末考試數(shù)學卷 題型:解答題

 

(本題10分)如圖4,邊長為的矩形,它的周長為14,面積為10,求下列各式的值:(1)   (2)

 

 

 

 

查看答案和解析>>

同步練習冊答案