【題目】如圖,正方形ABCD中,E為BC上一點,BE=2CE,連接DE,F(xiàn)為DE中點,以DF為直角邊作等腰Rt△DFG,連接BG,將△DFG繞點D順時針旋轉得△DF′G′,G′恰好落在BG的延長線上,連接F′G,若BG=2 ,則S△GF′G′= .
【答案】
【解析】解:如圖,作GM⊥BC于M,MG的延長線交AD于N,作DK⊥BG′于K,作KQ⊥DG′于Q,作F′H′BG′于H,BG′交AD于P.
∵BE=2EC,設EC=a,則BE=2a,BC=CD=MN=3a,
∵DG=GE,∠DGE=90°,易證△DGN≌△GEM,設EM=x,
則GN=EM=x,GM=DN=CM=a+x,
∴x+x+a=3a,
∴x=a,
∴BM=EM,∵GM⊥BE,
∴GB=GE=2 ,
∵GM=2a.EM=a,
在Rt△GEM中,可得5a2=20,
∵a>0,
∴a=2,
∴AB=BC=CD=AD=6,GM=4,CM=DN=4,AN=GN=2,DF=EF=GF=G′F′= ,DG=GE=DG′=2 ,
∵△GBM∽△BPA,
∴ = ,
∴ = ,
∴AP=PD=3,
由△APB∽△KPD,可得DK= ,
∵DG′=DG,DK⊥GG′,
∴G′K=GK= = ,
設BG′交DF′于T,作TR⊥DG′于R,
∵tan∠TG′R= = = ,設TR=3k,RG′=4k,
∵∠TDR=45°,
∴TR=DR=3k,
∴7k=2 ,
∴k= ,
∴TG′=5k= ,
由△′F′H∽△G′TF′,
可得G′H= ,
在Rt△G′F′H中,F(xiàn)′H= = ,
∴S△GG′F′= GG′F′H= × × = ,
所以答案是 .
【考點精析】關于本題考查的等腰直角三角形和勾股定理的概念,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC=( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的菱形ABCD中,∠DAB=60度.連接對角線AC,以AC為邊作第二個菱形ACC1D1 , 使∠D1AC=60°;連接AC1 , 再以AC1為邊作第三個菱形AC1C2D2 , 使∠D2AC1=60°;…,按此規(guī)律所作的第n個菱形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線.這兩直線之間一點.
(1)如圖1,若與的平分線相交于點,若,求的度數(shù).
(2)如圖2,若與的平分線相交于點,與有何數(shù)量關系?并證明你的結論.
(3)如圖3,若的平分線與的平分線所在的直線相交于點,請直接寫出與之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一數(shù)值轉換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結果是12,第2次輸出的結果是6,第3次輸出的結果是__________,依次繼續(xù)下去……第2 016次輸出的結果是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現(xiàn)已掛果,經(jīng)濟效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計圖所示.
(1)分別計算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完假設每分鐘的進水量和出水量是兩個常數(shù),容器內的水量(單位:升)與時間(單位:分鐘)之間的部分關系如圖象所示從開始進水到把水放完需要多少分鐘.( )
A.20B.24C.18D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰Rt△ABC,∠ACB=90°,CA=CB,以BC為邊向外作等邊△CBA,連接AD,過點C作∠ACB的角平分線與AD交于點E,連接BE.
(1)若AE=2,求CE的長度;
(2)以AB為邊向下作△AFB,∠AFB=60°,連接FE,求證:FA+FB= FE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,半徑OA=2cm,∠AOB=120°
(1)求tan∠OAB的值;
(2)求圖中陰影部分的面積S;
(3)在⊙O上一點P從A點出發(fā),沿逆時針方向運動一周,回到點A,在點P的運動過程中,滿足S△POA=S△AOB時,直接寫出P點所經(jīng)過的弧長(不考慮點P與點B重合的情形).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com