能完全覆蓋住三角形的最小圓,叫做三角形的最小覆蓋圓.在△ABC中,AB=AC=4
5
,BC=8,則△ABC的最小覆蓋圓的面積是
( 。
A.64πB.25πC.20πD.16π
作AD⊥BC于點D,則圓心O一定在AD上,
∵AB=AC,AD⊥BC,
∴BD=
1
2
BC=
1
2
×8=4,
在直角△ABD中,AD=
AB2-BD2
=
(4
5
)2-42
=8,
設圓的半徑長是R,則OD=8-R,OB=R.
在直角△OBD中,OB2=OD2+BD2
即R2=(8-R)2+16,
解得:R=5.
則圓的面積是:25π.
故選B.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,若將△ABC的繞點C順時針旋轉(zhuǎn)90°后得到△DEC,則A點的對應點D的坐標是(  )
A.(-3,-2)B.(2,2)C.(3,0)D.(2,1)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙C經(jīng)過坐標原點,并與坐標軸分別交于A、D兩點,點B在⊙C上,∠B=30°,點D的坐標為(0,2),求A、C兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

半徑為5的圓中有兩條弦長分別為6,8的平行弦,這兩條弦之間的距離是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在以O為圓心的兩個同心圓中,小圓的半徑長為4,大圓的弦AB與小圓交于點C、D,且AC=CD,∠COD=60°
(1)求大圓半徑的長;
(2)若大圓的弦AE長為8
2
,請判斷弦AE與小圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,AB是⊙O的一條弦(不是直徑),點C,D是直線AB上的兩點,且AC=BD.
(1)判斷△OCD的形狀,并說明理由.
(2)當圖中的點C與點D在線段AB上時(即C,D在A,B兩點之間),(1)題的結(jié)論還存在嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O是等腰△ABC的外接圓,AB=AC=5,BC=6,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的半徑為10,OC⊥AB,垂足為C,OC=6,則弦AB的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

同步練習冊答案