如圖,已知:如圖①,直線與x軸、y軸分別交于A、B兩點(diǎn),兩動(dòng)點(diǎn)D、E分別從A、B兩點(diǎn)同時(shí)出發(fā)向O點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)到O點(diǎn)停止);對(duì)稱軸過點(diǎn)A且頂點(diǎn)為M的拋物線(a<0)始終經(jīng)過點(diǎn)E,過E作EG∥OA交拋物線于點(diǎn)G,交AB于點(diǎn)F,連結(jié)DE、DF、AG、BG.設(shè)D、E的運(yùn)動(dòng)速度分別是1個(gè)單位長(zhǎng)度/秒和個(gè)單位長(zhǎng)度/秒,運(yùn)動(dòng)時(shí)間為t秒.
(1)用含t代數(shù)式分別表示BF、EF、AF的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形ADEF是菱形?判斷此時(shí)△AFG與△AGB是否相似,并說明理由;
(3)當(dāng)△ADF是直角三角形,且拋物線的頂點(diǎn)M恰好在BG上時(shí),求拋物線的解析式.
解:(1)在直線解析式中,令x=0,得y=;令y=0,得x=1。
∴A(1,0),B(0,),OA=1,OB=。
∴tan∠OAB=!唷螼AB=60°。∴AB=2OA=2。
∵EG∥OA,∴∠EFB=∠OAB=60°。
∴,BF=2EF=2t。
∴AF=AB﹣BF=2﹣2t。
(2)①∵EF∥AD,且EF=AD=t,∴四邊形ADEF為平行四邊形。
若ADEF是菱形,則DE=AD=t.
由DE=2OD,即:t=2(1﹣t),解得t=。
∴t=時(shí),四邊形ADEF是菱形。
②此時(shí)△AFG與△AGB相似。理由如下:
如答圖1所示,連接AE,
∵四邊形ADEF是菱形,
∴∠DEF=∠DAF=60°!唷螦EF=30°。
由拋物線的對(duì)稱性可知,AG=AE。
∴∠AGF=∠AEF=30°。
在Rt△BEG中,BE=,EG=2,
∴!唷螮BG=60°。
∴∠ABG=∠EBG﹣∠EBF=30°。
在△AFG與△AGB中,∵∠BAG=∠GAF,∠ABG=∠AGF=30°,
∴△AFG∽△AGB。
(3)當(dāng)△ADF是直角三角形時(shí),
①若∠ADF=90°,如答圖2所示,
此時(shí)AF=2DA,即2﹣2t=2t,解得t=。
∴BE=t=,OE=OB﹣BE=。
∴E(0,),G(2,)。
設(shè)直線BG的解析式為y=kx+b,
將B(0,),G(2,)代入得:
,解得。
∴直線BG的解析式為。
令x=1,得,∴M(1,)。
設(shè)拋物線解析式為,
∵點(diǎn)E(0,)在拋物線上,
∴,解得。
∴拋物線解析式為,即。
②若∠AFD=90°,如答圖3所示,
此時(shí)AD=2AF,即:t=2(2﹣2t),解得:t=。
∴BE=t=,OE=OB﹣BE=。
∴E(0,),G(2,)。
設(shè)直線BG的解析式為y=k1x+b1,
將B(0,),G(2,)代入得:
,解得。
∴直線BG的解析式為。
令x=1,得y=,∴M(1,)。
設(shè)拋物線解析式為,
∵點(diǎn)E(0,)在拋物線上,
∴,解得。
∴拋物線解析式為,即。
綜上所述,符合條件的拋物線的解析式為:或
解析試題分析:(1)首先求出一次函數(shù)與坐標(biāo)軸交點(diǎn)A、B的坐標(biāo),然后解直角三角形求出BF、EF、AF的長(zhǎng)。
(2)由EF∥AD,且EF=AD=t,則四邊形ADEF為平行四邊形,若?ADEF是菱形,則DE=AD=t.由DE=2OE,列方程求出t的值;
如答圖1所示,推出∠BAG=∠GAF,∠ABG=∠AGF=30°,證明△AFG與△AGB相似。
(3)當(dāng)△ADF是直角三角形時(shí),有兩種情形,需要分類討論:
①若∠ADF=90°,如答圖2所示.首先求出此時(shí)t的值;其次求出點(diǎn)G的坐標(biāo),利用待定系數(shù)法求出直線BG的解析式,得到點(diǎn)M的坐標(biāo),最后利用頂點(diǎn)式和待定系數(shù)法求出拋物線的解析式。
②若∠AFD=90°,如答圖3所示,解題思路與①相同。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程的兩根.
(1)若拋物線的頂點(diǎn)為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長(zhǎng)的最小值;
(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O(shè)為原點(diǎn),OC、OA所在直線為軸建立坐標(biāo)系.拋物線頂點(diǎn)為A,且經(jīng)過點(diǎn)C.點(diǎn)P在線段AO上由A向點(diǎn)O運(yùn)動(dòng),點(diǎn)O在線段OC上由C向點(diǎn)O運(yùn)動(dòng),QD⊥OC交BC于點(diǎn)D,OD所在直線與拋物線在第一象限交于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)E′是E關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)Q運(yùn)動(dòng)到何處時(shí),四邊形OEAE′是菱形?
(3)點(diǎn)P、Q分別以每秒2個(gè)單位和3個(gè)單位的速度同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),PB∥OD?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)S△PAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川眉山11分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B在x軸上,點(diǎn)C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn),直線AD與拋物線交于另一點(diǎn)M.
(1)求這條拋物線的解析式;
(2)P為拋物線上一動(dòng)點(diǎn),E為直線AD上一動(dòng)點(diǎn),是否存在點(diǎn)P,使以點(diǎn)A、P、E為頂點(diǎn)的三角形為等腰直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)請(qǐng)直接寫出將該拋物線沿射線AD方向平移個(gè)單位后得到的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)450得到△A1B1C.請(qǐng)你寫出點(diǎn)A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo).請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對(duì)稱軸是直線
(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時(shí),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com