【題目】對于二次函數(shù)和一次函數(shù),我們把 稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線E.現(xiàn)有點(diǎn)A(1,0)和拋物線E上的點(diǎn)B(2,n),請完成下列任務(wù):
(嘗試)
(1)當(dāng)t=2時(shí),拋物線的頂點(diǎn)坐標(biāo)為 .
(2)判斷點(diǎn)A是否在拋物線E上;
(3)求n的值.
(發(fā)現(xiàn))通過(2)和(3)的演算可知,對于t取任何不為零的實(shí)數(shù),拋物線E總過定點(diǎn),定點(diǎn)的坐標(biāo) .
(應(yīng)用)二次函數(shù)是二次函數(shù)和一次函數(shù) 的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
【答案】嘗試:(1)(,-).(2)點(diǎn)A(1,0)在拋物線l上.(3)n=-1.
發(fā)現(xiàn):(1,0)、(2,-1).
應(yīng)用:不是,理由見解析
【解析】
嘗試:(1)將t的值代入“再生二次函數(shù)”中,通過配方可得到頂點(diǎn)的坐標(biāo);
(2)將點(diǎn)A的坐標(biāo)代入拋物線E上直接進(jìn)行驗(yàn)證即可;
(3)已知點(diǎn)B在拋物線E上,將該點(diǎn)坐標(biāo)代入拋物線E的解析式中直接求解,即可得到n的值.
發(fā)現(xiàn):將拋物線l展開,然后將含t值的式子整合到一起,令該式子為0(此時(shí)無論t取何值都不會(huì)對函數(shù)值產(chǎn)生影響),即可求出這個(gè)定點(diǎn)的坐標(biāo).
應(yīng)用:將發(fā)現(xiàn)中得到的兩個(gè)定點(diǎn)坐標(biāo)代入二次函數(shù)中進(jìn)行驗(yàn)證即可.
解:嘗試:
(1)∵將t=2代入拋物線l中,得:=2x27x+5=2(x)2,
∴此時(shí)拋物線的頂點(diǎn)坐標(biāo)為:(,-).
(2)∵將x=1代入y=2x27x+5,得 y=0,
∴點(diǎn)A(1,0)在拋物線l上.
(3)將x=2代入拋物線 y=2x27x+5的解析式中,得:
n=-1.
發(fā)現(xiàn):
∵將拋物線E的解析式展開,得:
=t(x1)(x-3)(x-1)+t(x-1)= t(x1)(x-2)(x-1)
∴拋物線l必過定點(diǎn)(1,0)、(2,-1).
應(yīng)用:將x=1代入,y=0,即點(diǎn)A在拋物線上.
將x=2代入,計(jì)算得:y=6≠-1,
即可得拋物線不經(jīng)過點(diǎn)B,
二次函數(shù)不是二次函數(shù)和一次函數(shù)y=x+1的一個(gè)“再生二次函數(shù)”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,,為上一動(dòng)點(diǎn),過點(diǎn)的直線交于兩點(diǎn),且,于點(diǎn),于點(diǎn),當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),設(shè), (當(dāng)的值為0或3時(shí),的值為2),探究函數(shù)隨自變量的變化而變化的規(guī)律.
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組對應(yīng)值,如下表:
0 | 0. 40 | 0. 55 | 1. 00 | 1. 80 | 2. 29 | 2. 61 | 3 | |
2 | 3. 68 | 3. 84 | 3. 65 | 3. 13 | 2. 70 | 2 |
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:點(diǎn)與點(diǎn)重合時(shí),長度約為________(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李師傅一家開車去旅游,出發(fā)前查看了油箱里有50升油,出發(fā)后先后走了城市路、高速路、山路最終到達(dá)旅游地點(diǎn),下面的兩幅圖分別描述了行駛里程及耗油情況,下面的描述錯(cuò)誤的是( )
A. 此車一共行駛了210公里
B. 此車高速路一共用了12升油
C. 此車在城市路和山路的平均速度相同
D. 以此車在這三個(gè)路段的綜合油耗判斷50升油可以行駛約525公里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點(diǎn)D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點(diǎn)A,將射線CA繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,與直線PQ交于點(diǎn)E.
(1)當(dāng)α=125°時(shí),∠ABC= °;
(2)求證:AC=CE;
(3)若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,繞點(diǎn)順時(shí)針旋轉(zhuǎn)后得到.
(1)畫出;(其中、對應(yīng)點(diǎn)分別是、)
(2)分別畫出旋轉(zhuǎn)過程中,點(diǎn)點(diǎn)經(jīng)過的路徑;
①求點(diǎn)經(jīng)過的路徑的長;
②求線段所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線過軸上一點(diǎn),且與拋物線相交于兩點(diǎn),點(diǎn)坐標(biāo)為.
(1)求直線和拋物線的函數(shù)解析式.
(2)若拋物線上有一點(diǎn)使得,求點(diǎn)坐標(biāo).
(3)在軸上是否存在一點(diǎn),使為等腰三角形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的邊CD上運(yùn)動(dòng),AC與BE相交于點(diǎn)F
(1)如圖1,當(dāng)點(diǎn)E運(yùn)動(dòng)到DC的中點(diǎn)時(shí),求△ABF與四邊形ADEF的面積之比;
(2)如圖2,當(dāng)點(diǎn)E運(yùn)動(dòng)到CE:ED=2:1時(shí),求△ABF與四邊形ADEF的面積之比;
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到CE:ED=n:1時(shí)(n是正整數(shù)),猜想△ABF與四邊形ADEF的面積之比(只寫結(jié)果,不要求寫過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com