如圖,已知?ABCD中,過點B的直線與AC相交于點E、與AD相交于點F、與CD的延長線相交于點G,若BE=5,EF=2,則FG=
10.5
10.5
分析:根據(jù)平行四邊形可判定△AEB∽△EGC,△AEF∽△BEC,利用其對應(yīng)邊成比例,可求出EG,然后用EG減去EF即可.
解答:解:∵AD∥BC,
∴△AEF∽△BEC,
AE
EC
=
EF
BE
,
又∵△ABE∽△EGC,
BE
EG
=
AE
EC
,
BE
EG
=
EF
BE

將BE=5,EF=2,代入求得EG=12.5,
∴FG=EG-EF=12.5-2=10.5.
故答案為:10.5.
點評:此題考查學(xué)生相似三角形的判定與性質(zhì)和平行四邊形的性質(zhì)的理解與掌握,利用相似三角形中的對應(yīng)邊成比例是解答此題的關(guān)鍵,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知?ABCD中,AB=4,BC=6,BC邊上的高AE=2,則DC邊上的高AF的長是
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、(1)探究規(guī)律:如圖,已知?ABCD,試用三種方法將它分成面積相等的兩部分;

(2)由上述方法,你能得到什么一般性的結(jié)論;
(3)解決問題:有兄弟倆分家時,原來共同承包的一塊平行四邊形田地ABCD,現(xiàn)要進(jìn)行平均劃分,由于在這塊地里有一口水井P,如圖所示,為了兄弟倆都能方便使用這口井,兄弟倆在劃分時犯難了,聰明的你能幫他們解決這個問題嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,已知?ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.
(1)試說明DE=BC;
(2)試問AB與DG+FC之間有何數(shù)量關(guān)系?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知ABCD是圓的內(nèi)接四邊形,對角線AC和BD相交于E,BC=CD=4,AE=6,如果線段BE和DE的長都是整數(shù),則BD的長等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是圓O的內(nèi)接四邊形,AB=BD,BM⊥AC于M,求證:AM=DC+CM.

查看答案和解析>>

同步練習(xí)冊答案