【題目】在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點D.過射線AD上一點M作BM的垂線,交直線AC于點N.
(1)如圖1,點M在AD上,若∠N=15°,BC=2,則線段AM的長為 ;
(2)如圖2,點M在AD上,求證:BM=NM;
(3)若點M在AD的延長線上,則AB,AM,AN之間有何數(shù)量關系?直接寫出你的結論,不證明.
【答案】(1)﹣1;(2)見解析;(3)AM.
【解析】
(1)證得∠ABM=15°,則∠MBD=30°,求出DM=1,則AM可求出;
(2)過點M作AD的垂線交AB于點E,根據(jù)ASA可證明△BEM≌△NAM,得出BM=NM;
(3)過點M作AD的垂線交AB于點E,同(2)可得△AEM為等腰直角三角形,證明△BEM≌△NAM,BE=AN,則問題可解;
解:(1)∵∠N=15°,∠BMN=∠BAN=90°,
∴∠ABM=15°,
∵AB=AC,∠BAC=90°,AD⊥BC,
∴∠ABC=∠C=45°,BD=CD,
∴∠MBD=∠ABD﹣∠ABM=45°﹣15°=30°.
∴DM=.
∴﹣1.
故答案為:﹣1;
(2)過點M作AD的垂線交AB于點E,
∵∠BAC=90°,AB=AC,AD⊥BC,
∴∠NAB=90°,∠BAD=45°,
∴∠AEM=90°﹣45°=45°∠BAD,
∴EM=AM,∠BEM=135°,
∵∠NAB=90°,∠BAD=45°,
∴∠NAD=135°,
∴∠BEM=∠NAD,
∵EM⊥AD,
∴∠AMN+∠EMN=90°,
∵MN⊥BM,
∴∠BME+∠EMN=90°,
∴∠BME=∠AMN,
在△BEM和△NAM中,
,
∴△BEM≌△NAM(ASA),
∴BM=NM;
(3)數(shù)量關系是:AB+AN=AM.
證明:過點M作AD的垂線交AB于點E,
同(2)可得△AEM為等腰直角三角形,
∴∠E=45°,AM=EM,
∵∠AME=∠BMN=90°,
∴∠BME=∠AMN,
在△BEM和△NAM中,
,
∴△BEM≌△NAM(AAS),
∴BE=AN,
∴AM.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G是正方形ABCD對角線AC上一點,作GE⊥AD,GF⊥AB,垂足分別為點E、F.
求證:四邊形AFGE與四邊形ABCD相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內,邊長為 4 的等邊△ABC 的頂點 B 與原點重合,將△ABC 繞頂點 C 順時針旋轉 60°得到△ACA1,將四邊形 ABCA1看作一個基本圖形,將此基本圖形不斷復制并平移,請回答:
(1)求點 A的坐標;點 A1的坐標.
(2)求A2018的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一型號電腦每臺報價均為4000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一臺按原價收費,其余每臺優(yōu)惠25%;乙商場的優(yōu)惠條件是:每臺優(yōu)惠20%.
(1)設該學校所買的電腦臺數(shù)是x臺,選擇甲商場時,所需費用為元,選擇乙商場時,所需費用為元,請分別寫出, 與x之間的關系式;
(2)該學校如何根據(jù)所買電腦的臺數(shù)選擇到哪間商場購買,所需費用較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是( 。
A.AC=1,BC=,AB=2B.AC:BC:AB=3:4:5
C.∠A:∠B:∠C=1:2:3D.∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).
請根據(jù)以上信息,解答下列問題:
(1)該汽車交易市場去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應的數(shù)據(jù))
(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應扇形的圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分9分)深圳大運會期間,某賓館有若干間住房,住宿記錄提供了如下信息:①7月20日全部住滿,一天住宿費收入為3600元;②7月21日有10間房空著,一天住宿費收入為2800元;③該賓館每間房每天收費標準相同。
【1】(1)求該賓館共有多少間住房,每間住房每天收費多少元?
【2】(2)通過市場調查發(fā)現(xiàn),每個住房每天的定價每增加10元,就會有一個房間空閑;己知該賓館空閑房間每天每間費用10元,有游客居住房間每天每間再增加20元的其他費用,問房價定為多少元時,該賓館一天的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=5,BC=3,點P在BC邊上,將△CDP沿DP折疊,點C落在點E處,PE,DE分別交AB于點O,F,且OP=OF,則AF的值為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com