精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,點C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE與⊙O相切,交CB的延長線于E.
(1)判斷直線AC和DE是否平行,并說明理由;
(2)若∠A=30°,BE=1cm,分別求線段DE和
BD
的長(直接寫出最后結(jié)果).
分析:(1)平行.連接OD,∵DE與⊙O相切,得出OD⊥DE.根據(jù)BD是∠ABE的平分線,推出∠ODB=∠DBE,得到OD∥BE.推出BE⊥DE,根據(jù)AB是⊙O的直徑,得到AC⊥CE,即可推出答案;
(2)由∠A=30°,根據(jù)三角形的外角性質(zhì)求出∠DBE,即可求出DE,根據(jù)弧長公式即可求出弧BD的長.
解答:精英家教網(wǎng)(1)答:直線AC和DE平行.
理由是:
連接OD,∵DE與⊙O相切,
∴OD⊥DE.
∵OB=OD,
∴∠ODB=∠OBD,
∵BD是∠ABE的平分線,
即∠ABD=∠DBE,
∴∠ODB=∠DBE,
∴OD∥BE.
∴BE⊥DE,即DE⊥CE,
∵AB是⊙O的直徑,點C在⊙O上,
∴AC⊥CE,
∴AC∥DE.

(2)答:線段DE的長是
3
BD
的長是
3
點評:本題主要考查對切線的性質(zhì),三角形的外角性質(zhì),三角形的角平分線,平行線的判定,圓周角定理,弧長公式,等腰三角形的性質(zhì)等知識點的理解和掌握,綜合運用這些性質(zhì)進行推理是證此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點,過點M作DM⊥AB,交弦AC于點E,交⊙O于點F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點E是
AD
的中點,連接BE交AC于點G,BG的垂直平分線CF交BG于H交AB于F點.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點B的弦BD⊥OC交⊙O于點D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當BC=BD,且BD=12cm時,求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習冊答案