【題目】如圖,拋物線的頂點(diǎn)為,與y軸交于點(diǎn)若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn),點(diǎn)A的對(duì)應(yīng)點(diǎn)為,則拋物線上PA段掃過(guò)的區(qū)域陰影部分的面積為______

【答案】12

【解析】分析:根據(jù)平移的性質(zhì)得出四邊形APPA是平行四邊形,進(jìn)而得出AD,PP的長(zhǎng),求出面積即可.

詳解連接APAP′,過(guò)點(diǎn)AADPP于點(diǎn)D由題意可得出APAP′,AP=AP′,∴四邊形APPA是平行四邊形∵拋物線的頂點(diǎn)為P(﹣2,2),y軸交于點(diǎn)A0,3),平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,﹣2),PO==2,AOP=45°.又∵ADOP,∴△ADO是等腰直角三角形,PP′=2×2=4,AD=DO=sin45°OA=×3=,∴拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為4×=12

故答案為:12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明.

已知:如圖,ABDE,求證:∠D+BCD﹣∠B180°.

證明:過(guò)點(diǎn)CCFAB

CFAB(已作),

∴∠1   

∵∠2=∠BCD﹣∠1,

∴∠2=∠BCD﹣∠B   

ABDECFAB(已知),

CFDE   

∴∠D+2180°   

∴∠D+BCD﹣∠B180°  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(a0),B(0b),C-a0),且+b2-4b+4=0

(1)求證:∠ABC=90°;

(2)ABO的平分線交x軸于點(diǎn)D,求D點(diǎn)的坐標(biāo).

(3)如圖,在線段AB上有兩動(dòng)點(diǎn)M、N滿足∠MON=45°,求證:BM2+AN2=MN2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.

(參考數(shù)據(jù):sin22°,cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知長(zhǎng)方形ABCD,點(diǎn)E在線段AD上,將沿直線BE翻折后,點(diǎn)A落在線段CD上的點(diǎn)F.如果的周長(zhǎng)為12,的周長(zhǎng)為24,那么FC長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)MAC的中點(diǎn),以AB為直徑作分別交于點(diǎn)

求證:;

填空:

,當(dāng)時(shí),______;

連接,當(dāng)的度數(shù)為______時(shí),四邊形ODME是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算1100100個(gè)正整數(shù)的和.許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來(lái)非常繁瑣,且易出錯(cuò).聰明的小高斯經(jīng)過(guò)探索后,給出了下面漂亮的解答過(guò)程.

解:設(shè)S1+2+3+…+100

S100+99+98+…+1

+②,得(即左右兩邊分別相加):

2S=(1+100+2+99+3+98+…+100+1),

,

100×101,

所以,S③,

所以,1+2+3+…+1005050

后來(lái)人們將小高斯的這種解答方法概括為倒序相加法.請(qǐng)你利用倒序相加法解答下面的問(wèn)題.

1)計(jì)算:1+2+3+…+101;

2)請(qǐng)你觀察上面解答過(guò)程中的③式及你運(yùn)算過(guò)程中出現(xiàn)的類似③式,猜想:1+2+3+…+n   ;

3)至少用兩種方法計(jì)算:1001+1002+…+2000

方法1

方法2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=的圖象與雙曲線y=(k≠0,x>0)相交于點(diǎn)A(3,m)和點(diǎn)B.

(1)求雙曲線的解析式及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Py軸上,連接PA,PB,求當(dāng)PA+PB的值最小時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l1與坐標(biāo)軸交于A,B兩點(diǎn),直線l2≠0)與坐標(biāo)軸交于點(diǎn)C,D.

(1)求點(diǎn)A,B的坐標(biāo);

(2)如圖,當(dāng)=2時(shí),直線l1,l2與相交于點(diǎn)E,求兩條直線與軸圍成的△BDE的面積;

(3)若直線l1,l2軸不能圍成三角形,點(diǎn)P(a,b)在直線l2(k≠0)上,且點(diǎn)P在第一象限.

①求的值;

②若,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案