【題目】小穎綜合與實(shí)踐小組學(xué)習(xí)了三角函數(shù)后,開展了測量本校旗桿高度的實(shí)踐活動(dòng).他們制訂了測量方案,并利用課余時(shí)間完成了實(shí)地測量.他們?cè)谠撈鞐U底部所在的平地上,選取兩個(gè)不同測點(diǎn),分別測量了該旗桿頂端的仰角以及這兩個(gè)測點(diǎn)之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個(gè)測點(diǎn)之間的距離時(shí),都分別測量了兩次并取它們的平均值作為測量結(jié)果,如表是不完整測量數(shù)據(jù).

課題

測量旗桿的高度

成員

組長:小穎,組員:小明,小剛,小英

測量工具

測量角度的儀器,皮尺等

測量示意圖

說明:

線段GH表示學(xué)校旗桿,測量角度的儀器的高度ACBD1.62m,測點(diǎn)A,BH在同一水平直線上,A,B之間的距離可以直接測得,且點(diǎn)GH,A,B,CD都在同一豎直平面內(nèi),點(diǎn)CD,E在同一條直線上,點(diǎn)EGH上.

測量數(shù)據(jù)

測量項(xiàng)目

第一次

第二次

平均值

GCE的度數(shù)

30.6°

31.4°

31°

GDE的度數(shù)

36.8°

37.2°

37°

A,B之間的距離

10.1m

10.5m

   m

1)任務(wù)一:完成表格中兩次測點(diǎn)A,B之間的距離的平均值.

2)任務(wù)二:根據(jù)以上測量結(jié)果,請(qǐng)你幫助該“綜合與實(shí)踐”小組求出學(xué)校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°0.51,cos31°0.86,tan31°0.60,sin37°0.60cos37°0.80,tan37°0.75

【答案】110.3;(232.5m

【解析】

1)由平均數(shù)的計(jì)算方法可求解;

2)由銳角三角函數(shù)可求DE,CE,由CDCEDE,列出方程可求解.

解:(1)任務(wù)一:兩次測點(diǎn)A,B之間的距離的平均值=10.3m,

故答案為10.3;

2)由題意可得四邊形EDBH和四邊形CDBA是矩形,

CDAB10.3m,EHBD16.2m

RtGED中,tanGDE,

DE,

同理:CE

CDCEDE,

CD

又∵CD10.3m,∠GCE31°,∠GDE37°,tan31°≈0.60,tan37°≈0.75,

,

GE30.90,

GHGE+EH30.90+1.62≈32.5m),

答:學(xué)校旗桿GH的高度約為32.5m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O及⊙O上一點(diǎn)P,過點(diǎn)P作⊙O的切線.

小明設(shè)計(jì)了如下尺規(guī)作法:

①連接OP,以點(diǎn)P為圓心,OP長為半徑畫弧交⊙O于點(diǎn)A;

②連接OA,延長OAB,使AB=OA,作直線PB.則直線即為所求作.

1)請(qǐng)證明小明作法的正確性;

2)請(qǐng)你自己再設(shè)計(jì)一種尺規(guī)作圖方法(保留痕跡,不要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷一種成本價(jià)為20/件的商品,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于成本價(jià)的1.8倍,在試銷售過程中發(fā)現(xiàn)每天的銷量y(件)與售價(jià)x(元/件)之間滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表所示:

1)求yx之間的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

2)該商場銷售這種商品每天所獲得的利潤為w元,若每天銷售這種商品需支付人員工資、管理費(fèi)等各項(xiàng)費(fèi)用共200元,求wx之間的函數(shù)表達(dá)式;并求出這種商品銷售單價(jià)定為多少時(shí),才能使商場每天獲取的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于第一、三象限內(nèi)的兩點(diǎn),與軸交于點(diǎn) .

⑴求該反比例函數(shù)和一次函數(shù)的解析式;

⑵在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo);

⑶直接寫出當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB9,AD6,點(diǎn)O為對(duì)角線AC的中點(diǎn),點(diǎn)EDC的延長線上且CE1.5,連接OE,過點(diǎn)OOFOECB延長線于點(diǎn)F,連接FE并延長交AC的延長線于點(diǎn)G,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.中,沿對(duì)角線所在的直線折疊,使點(diǎn)落在點(diǎn)處,于點(diǎn).連接.

1)求證:

2)求證:為等腰三角形;

3)將圖1的沿射線方向平移得到(如圖2所示) .若在中,. 當(dāng)時(shí),直接寫出平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE

1)求證:AE⊙O的切線;

2)如果AB=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,AC、BD交于點(diǎn)O,點(diǎn)P、Q分別是ABBD上的動(dòng)點(diǎn),點(diǎn)P的運(yùn)動(dòng)路徑是,點(diǎn)Q的運(yùn)動(dòng)路徑是BD,兩點(diǎn)的運(yùn)動(dòng)速度相同并且同時(shí)結(jié)束.若點(diǎn)P的行程為x的面積為y,則y關(guān)于x的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案