【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,連接DE.
(1)求證:△DEC≌△EDA;
(2)求DF的值.
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴AD=BC,AB=DC.
由折疊可得:EC=BC,AE=AB,
∴AD=EC,AE=DC,
在△ADE與△CED中,
,
∴△DEC≌△EDA(SSS).
(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,
∴∠ACD=∠CAE,
∴AF=CF,
設(shè)DF=x,則AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2,
即32+x2=(4﹣x)2,
解得;x= ,
即DF= .
【解析】(1)根據(jù)矩形的性質(zhì)、軸對稱的性質(zhì)可得到AD=EC,AE=DC,即可證到△DEC≌△EDA(SSS);(2)易證AF=CF,設(shè)DF=x,則有AF=4﹣x,然后在Rt△ADF中運(yùn)用勾股定理就可求出DF的長.
【考點(diǎn)精析】本題主要考查了翻折變換(折疊問題)的相關(guān)知識(shí)點(diǎn),需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,真命題有( )
(1)同位角相等
(2)相等的角是對頂角
(3)直角三角形的兩個(gè)銳角互余
(4)任何數(shù)的平方都是正數(shù)
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.兩個(gè)全等三角形,一定是軸對稱的
B.兩個(gè)軸對稱的三角形,一定全等
C.三角形的一條中線把三角形分成以中線為軸對稱的兩個(gè)圖形
D.三角形的一條高把三角形分成以高線為軸對稱的兩個(gè)圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列不等式變形中正確的是( )
A.若a<b,則a-b<b-1B.若a>b,則ac2>bc2
C.若a-3>-3,則a>0D.若ab>0,則a<0,b<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)(﹣1,7)的直線l與x軸、y軸分別交于點(diǎn)A、B,且與直線y=﹣ x平行.
(1)求直線l的解析式;
(2)寫出在線段AB上,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是上半圓的弦,過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作切線的垂線,垂足為,且與交于點(diǎn),設(shè),的度數(shù)分別是.
(1)用含的代數(shù)式表示,并直接寫出的取值范圍;
(2)連接與交于點(diǎn),當(dāng)點(diǎn)是的中點(diǎn)時(shí),求,的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com