精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,在矩形ABCD中,∠DAC=65°,點E是CD上一點,BE交AC于點F,將△BCE沿BE折疊,點C恰好落在AB邊上的點C′處,則∠AFC′=

【答案】40°
【解析】解:∵矩形ABCD,∠DAC=65°, ∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,
∵△BCE沿BE折疊,點C恰好落在AB邊上的點C′處,
∴四邊形BCEC′是正方形,
∴∠BEC=45°,
由三角形的外角性質,∠BFC=∠BEC+∠ACD=45°+25°=70°,
由翻折的性質得,∠BFC′=∠BFC=70°,
∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.
所以答案是:40°.
【考點精析】認真審題,首先需要了解矩形的性質(矩形的四個角都是直角,矩形的對角線相等),還要掌握翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A﹣國學誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意愿,隨機調查了部分學生,結果統(tǒng)計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調查的總人數為人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為度,根據題中信息補全條形統(tǒng)計圖.
(2)學,F有800名學生,請根據圖中信息,估算全校學生希望參加活動A有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(≠0)的圖象如圖,給出下列四個結論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中結論正確的個數是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2 ,0),點D是對角線AC上一動點(不與A,C重合),連結BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點B的坐標為
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證: = ;
②設AD=x,矩形BDEF的面積為y,求y關于x的函數關系式(可利用①的結論),并求出y的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統(tǒng)計圖.

類別

頻數(人數)

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計

1


根據圖表提供的信息,解答下列問題:
(1)八年級一班有多少名學生?
(2)請補全頻數分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;
(3)在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】多多班長統(tǒng)計去年1~8月“書香校園”活動中全班同學的課外閱讀數量(單位:本),繪制了如圖折線統(tǒng)計圖,下列說法正確的是(
A.極差是47
B.眾數是42
C.中位數是58
D.每月閱讀數量超過40的有4個月

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.

(1)求過O,B,E三點的二次函數關系式;
(2)求直線DE的解析式和點M的坐標;
(3)若反比例函數y= (x>0)的圖象經過點M,求該反比例函數的解析式,并通過計算判斷點N是否在該函數的圖象上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動點M從點D出發(fā),按折線DCBAD方向以2cm/s的速度運動,動點N從點D出發(fā),按折線DABCD方向以1cm/s的速度運動

(1)若動點M、N同時出發(fā),經過幾秒鐘兩點相遇?
(2)若點E在線段BC上,BE=2cm,動點M、N同時出發(fā)且相遇時均停止運動,那么點M運動到第幾秒鐘時,與點A、E、M、N恰好能組成平行四邊形?

查看答案和解析>>

同步練習冊答案