【題目】如圖,拋物線y=ax2+2x﹣3a經(jīng)過(guò)A(1,0)、B(b,0)、C(0,c)三點(diǎn).
(1)求b,c的值;
(2)在拋物對(duì)稱軸上找一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)b=﹣3;(2)P(﹣1,﹣2);(3)存在點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形.符合條件的點(diǎn)N的坐標(biāo)為(﹣2,﹣3),(﹣1+,3)或(﹣1﹣,3).
【解析】
(1)先把A(1,0)代入拋物線y=ax2+2x﹣3a,求出a的值,然后再分別把B(b,0)、C(0,c)的值代入即可求出b,c的值;
(2)根據(jù)軸對(duì)稱的性質(zhì)找出點(diǎn)P的位置,然后求出直線BC的解析式和對(duì)稱軸方程,二者聯(lián)立可求出點(diǎn)P的坐標(biāo);
(3)分當(dāng)點(diǎn)N在x軸下方時(shí)和當(dāng)點(diǎn)N在x軸上方時(shí)兩種情況求解即可.
解:(1)把A(1,0)代入拋物線y=ax2+2x﹣3a,
可得:a+2﹣3a=0
解得a=1.
∴拋物線的解析式為:y=x2+2x﹣3;
把B(b,0),C(0,c)代入y=x2+2x﹣3,
可得:b=1或b=﹣3,c=﹣3,
∵A(1,0),
∴b=﹣3;
(2)∵拋物線的解析式為:y=x2+2x﹣3,
∴其對(duì)稱軸為直線x=﹣=﹣1,
連接BC,如圖1所示,
∵B(﹣3,0),C(0,﹣3),
∴設(shè)直線BC的解析式為y=kx+b(k≠0),
∴,
解得,
∴直線BC的解析式為y=﹣x﹣3,
當(dāng)x=﹣1時(shí),y=1﹣3=﹣2,
∴P(﹣1,﹣2);
(3)存在點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形.
如圖2所示,
①當(dāng)點(diǎn)N在x軸下方時(shí),
∵拋物線的對(duì)稱軸為直線x=﹣1,C(0,﹣3),
∴N1(﹣2,﹣3);
②當(dāng)點(diǎn)N在x軸上方時(shí),
如圖2,過(guò)點(diǎn)N'作N'D⊥x軸于點(diǎn)D,
在△AN'D與△M'CO中,
∴△AN'D≌△M'CO(AAS),
∴N'D=OC=3,即N'點(diǎn)的縱坐標(biāo)為 3.
∴3=x2+2x﹣3,
解得x=﹣1+或x=﹣1﹣,
∴N'(﹣1+,3),N“(﹣1﹣,3).
綜上所述,符合條件的點(diǎn)N的坐標(biāo)為(﹣2,﹣3),(﹣1+,3)或(﹣1﹣,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別從A,B兩地同時(shí)出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達(dá)B地后,乙繼續(xù)前行.設(shè)出發(fā)x h后,兩人相距y km,圖中折線表示從兩人出發(fā)至乙到達(dá)A地的過(guò)程中y與x之間的函數(shù)關(guān)系.
根據(jù)圖中信息,求:
(1)點(diǎn)Q的坐標(biāo),并說(shuō)明它的實(shí)際意義;
(2)甲、乙兩人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果超市用5000元購(gòu)進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購(gòu)進(jìn)該品種蘋果,但這次的進(jìn)貨價(jià)比試銷時(shí)每千克多了0.2元,購(gòu)進(jìn)蘋果數(shù)量是試銷的2倍.
(1)試銷時(shí)該品種蘋果的進(jìn)價(jià)是每千克多少元?
(2)如果超市將該品種蘋果按每千克5元的定價(jià)出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某天,小明來(lái)到體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還在家里,此時(shí)離比賽開(kāi)始還有25分鐘,于是立即步行回家取票.同時(shí),他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.下圖中線段、分別表示父、子倆送票、取票過(guò)程中,離體育館的路程(米)與所用時(shí)間(分鐘)之間的函數(shù)關(guān)系,結(jié)合圖象解答下列問(wèn)題(假設(shè)騎自行車和步行的速度始終保持不變):
【1】求點(diǎn)的坐標(biāo)和所在直線的函數(shù)關(guān)系式
【2】小明能否在比賽開(kāi)始前到達(dá)體育館
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究與證明)
在正方形ABCD中,G是射線AC上一動(dòng)點(diǎn)(不與點(diǎn)A、C重合),連BG,作BH⊥BG,且使BH=BG,連GH、CH.
(1)若G在AC上(如圖1),則:①圖中與△ABG全等的三角形是 .
②線段AG、CG、GH之間的數(shù)量關(guān)系是 .
(2)若G在AC的延長(zhǎng)線上(如圖2),那么線段AG、CG、BG之間有怎樣的數(shù)量關(guān)系?寫出結(jié)論并給出證明;
(應(yīng)用)(3)如圖3,G在正方形ABCD的對(duì)角線CA的延長(zhǎng)線上,以BG為邊作正方形BGMN,若AG=2,AD=4,請(qǐng)直接寫出正方形BGMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】題目:如圖①,在四邊形ABCD中,AB=AD,∠ABC=∠ADC,那么BC=CD嗎?請(qǐng)說(shuō)明理由.
小明的作法如下:
如圖②,連結(jié)AC.
∵AB=AD,∠ABC=∠ADC,AC=AC.
∴△ABC≌△ADC.
∴BC=CD.
(1)小明的作法錯(cuò)誤的原因是 .
(2)請(qǐng)正確解答這道題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+b的圖象與x軸交于點(diǎn)A(2,0),與反比例函數(shù)y=的圖象交于點(diǎn)B(3,n).
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P為x軸上的點(diǎn),且△PAB的面積是2,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開(kāi)始時(shí)繩子BC的長(zhǎng)為13m,此人以0.5m/s的速度收繩.10s后船移動(dòng)到點(diǎn)D的位置,問(wèn)船向岸邊移動(dòng)了多少m?(假設(shè)繩子是直的,結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有兩輛玩具車進(jìn)行30米的直跑道比賽,兩車從起點(diǎn)同時(shí)出發(fā),A車到達(dá)終點(diǎn)時(shí),B車離終點(diǎn)還差12米,A車的平均速度為2.5米/秒.
(1)求B車的平均速度;
(2)如果兩車重新比賽,A車從起點(diǎn)退后12米,兩車能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若調(diào)整A車的平均速度,使兩車恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車的平均速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com