精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點,且AB=FC,E為AD上一點,EC交AF于點G,EA=EG. 求證:ED=EC.

【答案】解:證明:∵AB∥DC,F(xiàn)C=AB, ∴四邊形ABCF是平行四邊形.
∵∠B=90°,
∴四邊形ABCF是矩形.
∴∠AFC=90°,
∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.
∵EA=EG,
∴∠EAG=∠EGA.
∵∠EGA=∠CGF,
∴∠DAF=∠CGF.
∴∠D=∠ECD.
∴ED=EC
【解析】先證明四邊形ABCF是平行四邊形.再證出四邊形ABCF是矩形.得出∠AFC=90°,得出∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.由等腰三角形的性質得出∠EAG=∠EGA.由對頂角相等得出∠DAF=∠CGF.證出∠D=∠ECD.即可得出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,小明、小英、小麗和小華的家都在同一條街的同側居民住宅的一排住宅樓內居住,四個家庭的住址位于同一直線上.小明家到小英家的距離約為480米,小麗家到小英家的距離約為320米,小華家在小明家和小麗家之間線段的中點的位置.

請你通過所學圖形知識建立數學模型,畫出圖形,求出小明家和小華家的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點,EAC邊上一點AE2EFCF取得最小值時,∠ECF的度數為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,若P,Q為某個菱形相鄰的兩個頂點,且該菱形的兩條對角線分別與x軸,y軸平行,則稱該菱形為點P,Q的“相關菱形”.圖1為點P,Q的“相關菱形”的一個示意圖.
已知點A的坐標為(1,4),點B的坐標為(b,0),
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點A,B的“相關菱形”頂點的是;
(2)若點A,B的“相關菱形”為正方形,求b的值;
(3)⊙B的半徑為 ,點C的坐標為(2,4).若⊙B上存在點M,在線段AC上存在點N,使點M,N的“相關菱形”為正方形,請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣3x+m與雙曲線y= 相交于點A(m,2).
(1)求雙曲線y= 的表達式;
(2)過動點P(n,0)且垂直于x軸的直線與直線y=﹣3x+m及雙曲線y= 的交點分別為B和C,當點B位于點C下方時,求出n的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩支籃球隊進行了5場比賽,比賽成績繪制成了統(tǒng)計圖(如圖)

(1)分別計算甲乙兩隊5場比賽成績的平均分.

(2)就這5場比賽,分別計算兩隊成績的極差;

(3)就這5場比賽,分別計算兩隊成績的方差;

(4)如果從兩隊中選派一支球隊參加籃球錦標賽,根據上述統(tǒng)計,從平均分、極差、方差以及獲勝場數這四個方面分別進行簡要分析,你認為選派哪支球隊參賽更能取得好成績?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣4mx+2m﹣1(m≠0)與平行于x軸的一條直線交于A,B兩點.
(1)求拋物線的對稱軸;
(2)如果點A的坐標是(﹣1,﹣2),求點B的坐標;
(3)拋物線的對稱軸交直線AB于點C,如果直線AB與y軸交點的縱坐標為﹣1,且拋物線頂點D到點C的距離大于2,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數.

查看答案和解析>>

同步練習冊答案