【題目】如圖,點(diǎn)、是函數(shù)上兩點(diǎn),點(diǎn)為一動(dòng)點(diǎn),作軸,軸,下列結(jié)論:①≌;②;③若,則平分;④若,則.其中正確的序號(hào)是__________(把你認(rèn)為正確的都填上).
【答案】②③
【解析】
由點(diǎn)P是動(dòng)點(diǎn),進(jìn)而判斷出①錯(cuò)誤,設(shè)出點(diǎn)P的坐標(biāo),進(jìn)而得出AP,BP,利用三角形面積公式計(jì)算即可判斷出②正確,利用角平分線定理的逆定理判斷出③正確,先求出矩形 ,進(jìn)而得出 ,最后用三角形的面積公式即可得出結(jié)論.
解: 點(diǎn)是動(dòng)點(diǎn),
與不一定相等,
與不一定全等,故①不正確;
設(shè),
軸,
,
,
軸,
,
,
,
,故②正確;
如圖,
過點(diǎn)作于F,于E,
∵S△AOP=S△BOP,
是 的平分線,故③正確;
如圖1,
延長 交x軸于N,延長AP交y軸于M,
軸, 軸,
∴四邊形 是矩形,
∵點(diǎn)A,B在雙曲線 上,
,故④錯(cuò)誤;
∴正確的有,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△ADE(其中點(diǎn)B,C的對(duì)稱點(diǎn)分別為點(diǎn)D、E);
(2)畫出△ABC關(guān)于原點(diǎn)成中心對(duì)稱的△FGH(其中A、B、C的對(duì)稱點(diǎn)分別為點(diǎn)F,G,H).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a+1=0.
(1)若該方程有一根為0,求a的值及方程的另一根;
(2)當(dāng)a為何值時(shí),方程僅有一個(gè)實(shí)數(shù)根?求出此時(shí)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形中,于點(diǎn),,點(diǎn)為中點(diǎn),為線段上的點(diǎn),且.
(1)求證:平分;
(2)若,連接,當(dāng)四邊形為平行四邊形時(shí),求線段的長;
(3)若點(diǎn)為的中點(diǎn),連接、(如圖②),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( )
A. 2條 B. 4條 C. 5條 D. 6條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一菱形紙片,,將該菱形紙片折疊,使點(diǎn)恰好與的中點(diǎn)重合,折痕為,點(diǎn)、分別在邊、上,聯(lián)結(jié),那么的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,E是AB延長線上一點(diǎn),F是DC延長線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過點(diǎn)B作FG的平行線,交DA的延長線于點(diǎn)N,連接NG.
求證:BE=2CF;
試猜想四邊形BFGN是什么特殊的四邊形,并對(duì)你的猜想加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com