(2007•佳木斯)如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點B,點C的坐標;
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標平面內(nèi)是否存在點Q和點P(點P在直線AC上),使以O,P,C,Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

【答案】分析:(1)解方程x2-4x+3=0,結合圖形求解;
(2)過A作AH⊥x軸于H點,可證明△CAB∽△CMD.根據(jù)相似形的性質求D點坐標,運用待定系數(shù)法求MD的解析式.
(3)根據(jù)正方形的性質可直接寫出存在的點Q1(3,3)或
解答:解:(1)x2-4x+3=0,
得x=3或1.
∵OB<OC,
∴B(-1,0),C(3,0).

(2)過A作AH⊥x軸于H點,則AH=CH=6,
∴∠ACB=45°,
同理(過M作MT⊥x軸于T點,則MT=CT=2 )可證:∠MCD=45°,
∴∠ACB=∠MCD.
又∵∠DMC=∠BAC,
∴△CAB∽△CMD,

在△AHC中,,同理
,
,
,
設MD的解析式為y=kx+b(k≠0),則

∴函數(shù)解析式是:y=3x-5.

(3)存在.Q1(3,3)或
點評:主要考查了函數(shù)和幾何圖形的綜合運用.解題的關鍵是會靈活的運用函數(shù)圖象的性質和交點的意義求出相應的線段的長度或表示線段的長度,再結合具體圖形的性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年黑龍江省佳木斯市中考數(shù)學試卷(解析版) 題型:解答題

(2007•佳木斯)如圖,在平面直角坐標系中,已知點A(-3,6),點B,點C分別在x軸的負半軸和正半軸上,OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點B,點C的坐標;
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點,且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標平面內(nèi)是否存在點Q和點P(點P在直線AC上),使以O,P,C,Q為頂點的四邊形是正方形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:填空題

(2007•佳木斯)在Rt△ABC中,∠C=90°,sinB=,則=   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:填空題

(2007•佳木斯)數(shù)學興趣小組想測量一棵樹的高度,在陽光下,一名同學測得一根長為1米的竹竿的影長為0.8米.同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),其影長為1.2米,落在地面上的影長為2.4米,則樹高為    米.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2007•佳木斯)如圖,已知?ABCD中,∠BDE=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延長線相交于G,下面結論:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正確的結論是( )

A.①②③④
B.①②③
C.①②④
D.②③④

查看答案和解析>>

同步練習冊答案