【題目】某地為了解青少年實力情況,現(xiàn)隨機抽查了若干名初中學(xué)生進行視力情況統(tǒng)計,分為視力正常、輕度近視、重度近視三種情況,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求這次被抽查的學(xué)生一共有多少人?
(2)求被抽查的學(xué)生中輕度近視的學(xué)生人數(shù),并將條形統(tǒng)計圖補充完整;
(3)若某地有萬名初中生,請估計視力不正常(包括輕度近視、重度近視)的學(xué)生共有多少人?
【答案】(1)名;(2)12人,見解析;(3)萬人.
【解析】
(1)根據(jù)正常的人數(shù)是4人,占總?cè)藬?shù)的10%,即可求得被抽查的學(xué)生一共有多少人;
(2)被抽查的學(xué)生人數(shù)減去正常的人數(shù)與重度近視人數(shù)即可求得輕度近視的人數(shù),然后將條形統(tǒng)計圖補充完整;
(3)利用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.
解:(1)(人),
答:這次被抽查的學(xué)生一共是名;
(2)被抽查的學(xué)生中輕度近視的學(xué)生人數(shù):(人),
補全統(tǒng)計圖如圖所示;
(3)萬,
答:某地萬名初中生,估計視力不正常(包括輕度近視、重度近視)的學(xué)生共有萬人.
故答案為:(1)名;(2)12人,見解析;(3)萬人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AM是中線,D是AM所在直線上的一個動點(不與點A重合),DE∥AB交AC所在直線于點F,CE∥AM,連接BD,AE.
(1)如圖1,當點D與點M重合時,觀察發(fā)現(xiàn):△ABM向右平移BC到了△EDC的位置,此時四邊形ABDE是平行四邊形.請你給予驗證;
(2)如圖2,圖3,圖4,是當點D不與點M重合時的三種情況,你認為△ABM應(yīng)該平移到什么位置?直接在圖中畫出來.此時四邊形ABDE還是平行四邊形嗎?請你選擇其中一種情況說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】預(yù)計用1500元購買甲商品x個,乙商品y個,不料甲商品每個漲價1.5元,乙商品每個漲價1元,盡管購買甲商品的個數(shù)比預(yù)定數(shù)減少10個,總金額仍多用29元.又若甲商品每個只漲價1元,并且購買甲商品的數(shù)量只比預(yù)定數(shù)少5個, 乙商品仍每個漲價1元,那么甲、乙兩商品支付的總金額是1563.5元.
(1)求x、y的關(guān)系式;
(2)若預(yù)計購買甲商品的個數(shù)的2倍與預(yù)計購買乙商品的個數(shù)的和大于205,但小于210,求x,y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點為O.求證:
(1)△CDE≌△DBF;
(2)OA=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:對于一個圓和一個正方形給出如下定義:若圓上存在到此正方形四條邊距離都相等的點,則稱這個圓是該正方形的“等距圓”.
如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側(cè).
(1)當r=2時,在P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)中可以成為正方形ABCD的“等距圓”的圓心的是 ;
(2)若點P坐標為(﹣2,﹣1),則當⊙P的半徑r= 時,⊙P是正方形ABCD的“等距圓”.試判斷此時⊙P與直線BD的位置關(guān)系?并說明理由.
(3)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(8,2),頂點E、H在y軸上,且點H在點E的上方.若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生上學(xué)的交通方式,我校九年級(21)班的5名同學(xué)聯(lián)合設(shè)計了一份調(diào)查問卷,對該校部分學(xué)生進行了隨機調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設(shè)置選項,要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,其中“步行”的人數(shù)是 人;
(2)在扇形統(tǒng)計圖中,“乘公交車”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這5名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每逢金秋送爽之時,正是大閘蟹上市的旺季,也是吃蟹的最好時機,可謂膏肥黃美.
某經(jīng)銷商購進一批雌蟹、雄蟹共1000只,進價均為每只40元,然后以雌蟹每只75元、雄蟹每只60元的價格售完,共獲利29000元.
(1)求該經(jīng)銷商分別購進雌蟹、雄蟹各多少只?
(2)民間有“九雌十雄”的說法,即九月吃雌蟹,十月吃雄蟹.十月份,在進價不變的情況下該經(jīng)銷商決定調(diào)整價格,將雌蟹的價格在九月份的基礎(chǔ)上下調(diào)(降價后售價不低于進價),雄蟹的價格上漲,同時雌蟹的銷量較九月下降了,雄蟹的銷量上升了,結(jié)果十月份的銷售額比九月份增加了1000元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE °.
(2)如圖②,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,則∠COD= °.
(3)如圖③,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,0°<∠AOD<180°,如果∠COD=∠AOE,求∠COD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com