【題目】已知△ABC是等邊三角形,P為△ABC所在平面內(nèi)一個動點,BP=BA,若0°﹤∠PBC﹤ 180°,且∠PBC的平分線上一點D滿足DB=DA.
(1)當BP和BA重合時(如圖1),則∠BPD=______°.
(2)當BP在∠ABC內(nèi)部時(如圖2),求∠BPD的度數(shù)
(3)當BP在∠ABC外部時,請直接寫出∠BPD的度數(shù),并畫出相應的圖形.
【答案】(1)30;(2)∠BPD=30°;(3)圖形見解析,∠BPD=30°或150°.
【解析】
(1)由于P,A重合,DP=DB,∠DBP=∠DPB,因為DB是∠PBC的平分線,因此,∠DBP=∠DPB=30°;
(2)本題可通過構(gòu)建全等三角形來求解.連接CD,BP=BC,BD又是∠PBC的平分線,三角形PBD和三角形CBD中又有一公共邊,因此兩三角形全等,∠BPD=∠BCD,那么關鍵是求∠BCD的值,那么我們就要看∠BCD和∠ACB的關系了,可通過證明三角形ACD和BCD全等來得出,這兩個三角形中,BD=AD,BC=AC,有一條公共邊CD因此∠BCD=∠ACD=30°,那么就求出∠BPD的度數(shù)了;
(3)同(2)的證法完全一樣,步驟有2個,一是得出∠BCD的度數(shù),二是證明三角形BPD和BCD全等,同(2)完全一樣.
(當∠BPD是鈍角時,∠BPD=∠BCD=(360-60)÷2=150°,還是用的(2)中的三角形BPD,BCD全等,BCD,ACD全等)
解:(1)30°
(2)連結(jié)CD
∵ D在∠PBC的平分線上
∴∠PBD=∠CBD
∵△ABC是等邊三角形
∴BA=BC=AC,∠ACB=60°
∵BP=BA
∴BP=BC
∵BD=BD
∴△PBD≌△CBD(SAS)
∴∠BPD=∠BCD
∵DB=DA,BC=AC,CD=CD
∴△BCD≌△ACD
∴∠BCD=∠ACD=∠ACB=30°
∴∠BPD=30°
(3)∠BPD=30°或150°
科目:初中數(shù)學 來源: 題型:
【題目】小明同學想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走一段距離時到點D處,側(cè)得∠BDF=65°.若直線AB與EF之間的距離為60米.
(1)設池塘兩端的距離AB=x米,試用含x的代數(shù)式表示CD的長;
(2)當CD=100米時,求A、B兩點的距離(計算結(jié)果精確到個位).(參考數(shù)據(jù):sin45°≈0.71,cos65°≈0.42,tan65°≈2.14.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設,.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數(shù)量關系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市長途客運站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當?shù)谝惠v車開來時,他不上車,而是仔細觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優(yōu)、中、差三等,請你思考并回答下列問題:
(1)三輛車按出現(xiàn)的先后順序共有哪幾種可能?
(2)請列表分析哪種方案乘坐優(yōu)等車的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D為BC邊上一點,∠1=∠2=∠3,AC=AE.
求證:△ABC≌△ADE;(填空)
證明:∵∠2+∠E+∠AFE=180° ( )
∠3+∠C+∠CFD=180°(同理)
又∵∠2=∠3( )
∠AFE=∠CFD( )
∴∠E=_________.
∵∠1=∠2(已知)
∴∠1+∠CAD=∠2+∠_______.
即∠BAC=∠DAE
在△ABC和△ADE中
∴△ABC≌△ADE( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種商品,進價為每個20元,規(guī)定每個商品售價不低于進價,且不高于60元.經(jīng)調(diào)查發(fā) 現(xiàn),每天的銷售量y(個)與每個商品的售價x(元)滿足一次函數(shù)關系,其部分數(shù)據(jù)如下表所示:
(1)求y與x之間的函數(shù)關系式;
(2)設商場每天獲得的總利潤為w(元),求w與x之間的函數(shù)關系式;
(3)不考慮其他因素,當商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 P為等邊△ABC的邊AB上一點,Q為BC延長線上一點,且PA=CQ,連PQ交AC邊于D.
(1)證明:PD=DQ.
(2)如圖2,過P作PE⊥AC于E,若AB=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,△ABC為等邊三角形,其中點A,B,C的坐標分別為(-3,-1),(-3,-3),(-3+,-2).現(xiàn)以y軸為對稱軸作△ABC的對稱圖形,得△A1B1C1,再以x軸為對稱軸作△A1B1C1的對稱圖形,得△A2B2C2.
(1)直接寫出點C1,C2的坐標.
(2)能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?若能,請直接寫出所旋轉(zhuǎn)的度數(shù);若不能,請說明理由.
(3)設當△ABC的位置發(fā)生變化時,△A2B2C2,△A1B1C1與△ABC之間的對稱關系始終保持不變.
①當△ABC向上平移多少個單位長度時,△A1B1C1與△A2B2C2完全重合?并直接寫出此時點C的坐標;
②將△ABC繞點A順時針旋轉(zhuǎn)α°(0≤α≤180),使△A1B1C1與△A2B2C2完全重合,此時α的值為多少?點C的坐標又是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com