【題目】如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方2 米處的點C出發(fā),沿斜面坡度i=1: 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈ ,cos37°≈ ,tan37°≈ .計算結(jié)果保留根號)
【答案】解:如圖,延長ED交BC延長線于點F,則∠CFD=90°,
∵tan∠DCF=i= = ,
∴∠DCF=30°,
∵CD=4,
∴DF= CD=2,CF=CDcos∠DCF=4× =2 ,
∴BF=BC+CF=2 +2 =4 ,
過點E作EG⊥AB于點G,
則GE=BF=4 ,GB=EF=ED+DF=1.5+2=3.5,
又∵∠AED=37°,
∴AG=GEtan∠AEG=4 tan37°,
則AB=AG+BG=4 tan37°+3.5=3 +3.5,
故旗桿AB的高度為(3 +3.5)米
【解析】延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2 、DF= CD=2,作EG⊥AB,可得GE=BF=4 、GB=EF=3.5,再求出AG=GEtan∠AEG=4 tan37°可得答案.
【考點精析】根據(jù)題目的已知條件,利用關(guān)于方向角問題的相關(guān)知識可以得到問題的答案,需要掌握指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點D,AM⊥CD于點M,BN⊥CD于N.
(1)求證:∠ADC=∠ABD;
(2)求證:AD2=AMAB;
(3)若AM= ,sin∠ABD= ,求線段BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN= NF;③ = ;④S四邊形CGNF= S四邊形ANGD . 其中正確的結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數(shù)為( )
A.30°
B.45°
C.50°
D.75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A.
B.2 ﹣
C.2 ﹣
D.4 ﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校“百變魔方”社團準備購買A,B兩種魔方,已知購買2個A種魔方和6個B種魔方共需130元,購買3個A種魔方和4個B種魔方所需款數(shù)相同.
(1)求這兩種魔方的單價;
(2)結(jié)合社員們的需求,社團決定購買A,B兩種魔方共100個(其中A種魔方不超過50個).某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息,說明選擇哪種優(yōu)惠活動購買魔方更實惠.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,點A在⊙O上,∠AMN=30°,B為 的中點,P是直徑MN上一動點.
(1)利用尺規(guī)作圖,確定當PA+PB最小時P點的位置(不寫作法,但要保留作圖痕跡).
(2)求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點E在AB上,F(xiàn)是線段BD的中點,連接CE、FE.
(1)若AD=3 ,BE=4,求EF的長;
(2)求證:CE= EF;
(3)將圖1中的△AED繞點A順時針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點F,問(2)中的結(jié)論是否仍然成立,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com