用棋子按下列方式擺圖形,依照此規(guī)律,第n個圖形有
n(3n-1)
2
n(3n-1)
2
枚棋子.
分析:對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
解答:解:設(shè)第n個圖形的棋子數(shù)為Sn.
第1個圖形,S1=1;
第2個圖形,S2=1+4;
第3個圖形,S3=1+4+7;

第n個圖形,Sn=1+4+7+…+(3n-2)=
n(3n-1)
2

故答案為:
n(3n-1)
2
;
點評:主要考查了圖形的變化類問題,同時還考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用棋子按下列方式擺圖形,依此規(guī)律,第n個圖形比第(n-1)個圖形多( 。┟镀遄樱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用棋子按下列方式擺圖形,依此規(guī)律,第6個圖形比第5個圖形多
16
16
枚棋子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用棋子按下列方式擺圖形,依此規(guī)律,第6個圖形比第5個圖形多(  )枚棋子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)用棋子按下列方式擺圖形,依照此規(guī)律,第n個圖形有
n(3n-1)
2
n(3n-1)
2
枚棋子.
(2)觀察下列等式:
第一行     3=4-1
第二行     5=9-4
第三行    7=16-9
第四行    9=25-16

按照上述規(guī)律,第n行的等式為
(n+1)2-n2
(n+1)2-n2

(3)計算:(-
1
4
2011×42012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用棋子按下列方式擺圖形,照此規(guī)律,第n個圖形比第(n-1)個圖形多
(n+1)2
2
(n+1)2
2
枚棋子.

查看答案和解析>>

同步練習(xí)冊答案