【題目】如圖,某城市的電視塔AB坐落在湖邊,數(shù)學(xué)老師帶領(lǐng)學(xué)生隔湖測(cè)量電視塔AB的高度,在點(diǎn)M處測(cè)得塔尖點(diǎn)A的仰角∠AMB為22.5°,沿射線MB方向前進(jìn)200米到達(dá)湖邊點(diǎn)N處,測(cè)得塔尖點(diǎn)A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為米(結(jié)果保留根號(hào)).

【答案】100
【解析】解:如圖,連接AN,

由題意知,BM⊥AA',BA=BA'
∴AN=A'N,
∴∠ANB=∠A'NB=45°,
∵∠AMB=22.5°,
∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,
∴AN=MN=200米,
在Rt△ABN中,∠ANB=45°,
∴AB= AN=100 (米),
故答案為100
根據(jù)垂直平分線的性質(zhì),線段垂直平分線上的點(diǎn)與線段的兩個(gè)端點(diǎn)的距離相等,得到AN=A'N,再根據(jù)勾股定理求出AB的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:至少有一組對(duì)邊相等的四邊形為“等對(duì)邊四邊形”.

1)請(qǐng)寫出一個(gè)你學(xué)過(guò)的特殊四邊形中是“等對(duì)邊四邊形”的名稱;

2)如圖1,四邊形ABCD是“等對(duì)邊四邊形”,其中AB=CD,邊BACD的延長(zhǎng)線交于點(diǎn)M,點(diǎn)E、F是對(duì)角線ACBD的中點(diǎn),若∠M=60°,求證:EFAB;

3)如圖2.在△ABC中,點(diǎn)DE分別在邊AC、AB上,且滿足∠DBC=ECBA,線段CE、BD交于點(diǎn).

求證:∠BDC=AEC;

請(qǐng)?jiān)趫D中找到一個(gè)“等對(duì)邊四邊形”,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O.過(guò)點(diǎn)CBD的平行線,過(guò)點(diǎn)DAC的平行線,兩直線相交于點(diǎn)E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】開(kāi)展創(chuàng)衛(wèi)活動(dòng),某校倡議學(xué)生利用雙休日在人民公園參加義務(wù)勞動(dòng),為了解同學(xué)們勞動(dòng)情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動(dòng)時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問(wèn)題:

(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)求抽查的學(xué)生勞動(dòng)時(shí)間的眾數(shù)、中位數(shù);

(3)電視臺(tái)要從參加義務(wù)勞動(dòng)的學(xué)生中隨機(jī)抽取1名同學(xué)采訪,抽到時(shí)參加義務(wù)勞動(dòng)的時(shí)間為2小時(shí)的同學(xué)概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某高樓頂部有一信號(hào)發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測(cè)得該塔頂端F的仰角分別為45°和60°,矩形建筑物寬度AD=20m,高度DC=30m則信號(hào)發(fā)射塔頂端到地面的高度(即FG的長(zhǎng))為( )

A.(35 +55)m
B.(25 +45)m
C.(25 +75)m
D.(50+20 )m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明同學(xué)在點(diǎn)P處測(cè)得教學(xué)樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進(jìn)60米到達(dá)C處,此時(shí)測(cè)得教學(xué)樓A恰好位于正北方向.辦公樓B正好位于正南方向.求教學(xué)樓A與辦公樓B之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AD,AC=AE,∠1=2

1)求證:△ABC≌△ADE;

2)找出圖中與∠1、∠2相等的角(直接寫出結(jié)論,不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把八個(gè)等圓按相鄰兩兩外切擺放,其圓心連線構(gòu)成一個(gè)正八邊形,設(shè)正八邊形內(nèi)側(cè)八個(gè)扇形(無(wú)陰影部分)面積之和為S1 , 正八邊形外側(cè)八個(gè)扇形(有陰影部分)面積之和為S2 , 則 =( )

A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,AC上的中線BD把三角形的周長(zhǎng)分為24㎝和30㎝的兩個(gè)部分,求三角形的三邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案