【題目】在每個(gè)小正方形的邊長為的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在的正方形網(wǎng)格圖形中(如圖1),從點(diǎn)經(jīng)過一次跳馬變換可以到達(dá)點(diǎn),,,等處現(xiàn)有的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn)經(jīng)過跳馬變換到達(dá)與其相對的頂點(diǎn),最少需要跳馬變換的次數(shù)是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)題意畫出F點(diǎn),由圖一計(jì)算出規(guī)律即可推出.
如圖1,連接AC,CF,則AF=,
∴兩次變換相當(dāng)于向右移動(dòng)3格,向上移動(dòng)3格.
又∵MN=,∴(不是整數(shù)),
∴按A﹣C﹣F的方向連續(xù)變換10次后,相當(dāng)于向右移動(dòng)了10÷2×3=15格,向上移動(dòng)了10÷2×3=15格,此時(shí)M位于如圖所示的5×5的正方形網(wǎng)格的點(diǎn)G處,再按如圖所示的方式變換4次即可到達(dá)點(diǎn)N處.
∴從該正方形的頂點(diǎn)M經(jīng)過跳馬變換到達(dá)與其相對的頂點(diǎn)N,最少需要跳馬變換的次數(shù)是14次.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn)A,與軸交點(diǎn)C,拋物線過A,C兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式.
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求sin∠EBA的值.
(3)點(diǎn)N是拋物線對稱軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對稱軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,N,E,B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,E(8,0),F(0 , 6).
(1)當(dāng)G(4,8)時(shí),則∠FGE= °
(2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點(diǎn)P,使∠FPE=90°且四邊形OEPF被過P點(diǎn)的一條直線分割成兩部分后,可以拼成一個(gè)正方形.
要求:寫出點(diǎn)P點(diǎn)坐標(biāo),畫出過P點(diǎn)的分割線并指出分割線(不必說明理由,不寫畫法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于,對稱軸是直線,與軸交于點(diǎn).若點(diǎn),同時(shí)從點(diǎn)出發(fā),都以每秒個(gè)單位長度的速度分別沿,邊運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)的坐標(biāo),與軸的另一個(gè)交點(diǎn)的坐標(biāo).
(2)當(dāng),運(yùn)動(dòng)到秒時(shí),沿翻折,點(diǎn)恰好落在軸上點(diǎn)處,請判定此時(shí)四邊形的形狀,并求出點(diǎn)坐標(biāo).
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到對稱軸與的交點(diǎn)時(shí),點(diǎn)往回運(yùn)動(dòng),同時(shí)點(diǎn)則倍的速度繼續(xù)沿運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過程中,以點(diǎn),,為頂點(diǎn)的三角形面積是否存在最大值?若存在,請求出這個(gè)最大值;若不存在,請說明理由.
(4)在段的拋物線上有一點(diǎn)到線段的距離最大,請求出這個(gè)最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生的身高情況,隨機(jī)對該校男生、女生的身高進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成下面的統(tǒng)計(jì)圖表:
組別 | A | B | C | D | E |
身高(cm) | x<150 | 150≤x<155 | 155≤x<160 | 160≤x<165 | x≥165 |
根據(jù)圖表中信息,回答下列問題:
(1)在樣本中,男生身高的中位數(shù)落在 組(填組別序號(hào)),女生身高在B組的人數(shù)有 人;
(2)已知該校共有男生500人,女生480人,請估計(jì)身高在155≤x<165之間的學(xué)生約有多少人?
(3)從男生樣本的A、B兩組里,隨機(jī)安排2人參加一項(xiàng)活動(dòng),求恰好是1人在A組、1人在B組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生物學(xué)上研究表明:不同濃度的生長素對植物的生長速度影響不同,在一定范圍內(nèi),生長素的濃度對植物的生長速度有促進(jìn)作用,相反,在某些濃度范圍,生長速度會(huì)變緩慢,甚至阻礙植物生長(阻礙即植物不生長,甚至枯萎).小林同學(xué)在了解到這一信息后,決定研究生長素濃度與茶樹生長速度的關(guān)系,設(shè)生長素濃度為x克/升,生長速度為y毫米/天,當(dāng)x超過4時(shí),茶樹的生長速度y與生長素x濃度滿足關(guān)系式:.實(shí)驗(yàn)數(shù)據(jù)如下表,當(dāng)生長速度為0時(shí),實(shí)驗(yàn)結(jié)束.
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 2 | 4 | 6 | 8 | 10 | 9 | 7 | 4 | 0 |
(1)如圖,建立平面直角坐標(biāo)系xOy,描出表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)圖象;
(2)根據(jù)上述表格,求出整個(gè)實(shí)驗(yàn)過程中y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)結(jié)合畫出的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)若直線y=kx+3與上述函數(shù)圖象有2個(gè)交點(diǎn),則k的取值范圍是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點(diǎn)O,E為OC上動(dòng)點(diǎn)(不與O、C重合),作AF⊥BE,垂足為G,分別交BC、OB于F、H,連接OG、CG.
(1)求證:AH=BE;
(2)∠AGO的度數(shù)是否為定值?說明理由;
(3)若∠OGC=90°,BG=,求△OGC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com