如圖,一次函數(shù)y=-
12
x+2
分別交y軸、x 軸于A、B兩點(diǎn),拋物線y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?
分析:(1)首先求出一次函數(shù)與坐標(biāo)軸交點(diǎn)坐標(biāo),進(jìn)而帶入二次函數(shù)解析式得出b,c的值即可;
(2)根據(jù)作垂直x軸的直線x=t,得出M,N的坐標(biāo),進(jìn)而根據(jù)坐標(biāo)性質(zhì)得出即可.
解答:解:(1)∵一次函數(shù)y=-
1
2
x+2
分別交y軸、x 軸于A、B兩點(diǎn),
∴x=0時(shí),y=2,y=0時(shí),x=4,
∴A(0,2),B(4,0),
將x=0,y=2代入y=-x2+bx+c得c=2,
將x=4,y=0,c=2代入y=-x2+bx+c,
得到b=
7
2
,
∴y=-x2+
7
2
x+2;

(2)∵作垂直x軸的直線x=t,在第一象限交直線AB于M,
∴由題意,易得M(t,-
1
2
t+2),N(t,-t2+
7
2
t+2),
從而得到MN=-t2+
7
2
t+2-(-
1
2
t+2)=-t2+4t (0<t<4),
當(dāng)t=-
b
2a
=2時(shí),MN有最大值為:
4ac-b2
4a
=4.
點(diǎn)評(píng):此題主要考查了一次函數(shù)與二次函數(shù)的綜合應(yīng)用,根據(jù)已知得出M,N的坐標(biāo)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過(guò)點(diǎn)A.當(dāng)y<3時(shí),x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過(guò)點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案