【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為

【答案】
【解析】解:連接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,點O為AB的中點,
∴OC= AB=1,四邊形OMCN是正方形,OM=
則扇形FOE的面積是: =
∵OA=OB,∠AOB=90°,點D為AB的中點,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
則在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四邊形OGCH=S四邊形OMCN=( 2=
則陰影部分的面積是:
故答案為:
連接OC,作OM⊥BC,ON⊥AC,證明△OMG≌△ONH,則S四邊形OGCH=S四邊形OMCN , 求得扇形FOE的面積,則陰影部分的面積即可求得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在數(shù)學(xué)課中學(xué)習(xí)了《解直角三角形》的內(nèi)容后,雙休日組織教學(xué)興趣小組的小伙伴進行實地測量.如圖,他們在坡度是i=1:2.5的斜坡DE的D處,測得樓頂?shù)囊苿油ㄓ嵒捐F塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識很快計算出了鐵塔高AM.親愛的同學(xué)們,相信你也能計算出鐵塔AM的高度!請你寫出解答過程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將組織七年級學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜

1兩同學(xué)向公司經(jīng)理了解租車的價格,公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元王老師說我們學(xué)校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學(xué)想了一下,都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問你們準(zhǔn)備怎樣租車,甲同學(xué)說我的方案是只租用45座的客車可是會有一輛客車空出30個座位;乙同學(xué)說我的方案只租用60座客車正好坐滿且比甲同學(xué)的方案少用兩輛客車,王老師在旁聽了他們的談話說從經(jīng)濟角度考慮,還有別的方案嗎?如果是你你該如何設(shè)計租車方案,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,AB=a,C是半圓上一點,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD=時,四邊形AODC是菱形;
(3)當(dāng)AD=時,四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著紀(jì)錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也逐步增大.某商場從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7 500元購進A型空氣凈化器和用6 000元購進B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?
(2)經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎(chǔ)上,售價每降低50元,每天將多售出1臺,如果每天商場銷售B型空氣凈化器的利潤為3200元,請問該商場應(yīng)將B型空氣凈化器的售價定為多少元?
(3)已知A型空氣凈化器凈化能力為340m3/h,B型空氣凈化器凈化能力為240m3/h.某公司室內(nèi)辦公場地總面積為600m2 , 室內(nèi)墻高3.5m.受二胎政策影響,近期孕婦數(shù)量激增,為保證胎兒健康成長,該公司計劃購買15臺空氣凈化器凈化空氣,每天花費30分鐘將室內(nèi)空氣凈化一新,若不考慮空氣對流等因素,該公司至少要購買A型空氣凈化器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游商品經(jīng)銷店欲購進AB兩種紀(jì)念品,若用380元購進A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購進A種紀(jì)念品10件,B種紀(jì)念品6件.

1)求A、B兩種紀(jì)念品的進價分別為多少?

2)若該商店每銷售1A種紀(jì)念品可獲利5元,每銷售1B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購進A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出時總獲利不低于216元,問應(yīng)該怎樣進貨,才能使總獲利最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期開學(xué)前夕,某文具店用4000元購進若干書包,很快售完,接著又用4500元購進第二批書包,已知第二批所購進書包的只數(shù)是第一批所購進書包的只數(shù)的1.5倍,且每只書包的進價比第一批的進價少5元,求第一批書包每只的進價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點OADBC交于點P,BECD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象過M(1,3),N(-2,12)兩點.

(1)求函數(shù)的解析式;

(2)試判斷點P(2a,-6a+8)是否在函數(shù)的圖象上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案