【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A. 12B. 24C. 12D. 16
【答案】D
【解析】
在矩形ABCD中根據(jù)AD∥BC得出∠DEF=∠EFB=60°,由折疊的性質(zhì)可得∠A=∠A′=90°,A′E=AE=2,AB=A′B′,∠A′EF=∠AEF=180°-60°=120°,∠A′EB′=60°.根據(jù)直角三角形的性質(zhì)得出A′B′=AB=2,然后根據(jù)矩形的面積公式列式計算即可得解.
在矩形ABCD中,
∵AD∥BC,
∴∠B′EF=∠EFB=60°,
由折疊的性質(zhì)得∠A=∠A′=90°,A′E=AE=2,AB=A′B′,∠A′EF=∠AEF=180°-60°=120°,
∴∠A′EB′=∠A′EF-∠B′EF=120°-60°=60°.
在Rt△A′EB′中,
∵∠A′B′E=90°-60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2,即AB=2,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面積=ABAD=2×8=16.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,∠MON =70°,點A、B在∠MON的兩條邊上運動,∠MAB與∠NBA的平分線交于點P.
(1)點A、B在運動過程中,∠P的大小會變嗎?若不會,求∠P的度數(shù);若會,請說明理由.
(2)如圖②,繼續(xù)作BC平分∠ABO,AP的反向延長線交BC的延長線于點D,點A、B在運動過程中,∠D的大小會變嗎?若不會,求出∠D的度數(shù);若會,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,BC=9.將矩形紙片折疊,使點B和點D重合.
(1)求ED的長;
(2)求折痕EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖象中所反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家.其中x表示時 間,y表示張強離家的距離.根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強家2.5千米
B. 張強在體育場鍛煉了15分鐘
C. 體育場離早餐店1.千米
D. 張強從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 是一個邊長為 6 的正方形,點 在 的延長線上,連接 ,過作 的垂線,交 的延長線于點 ,且 ,則 _____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學(xué)的思路寫出證明過程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請從以下四個一元二次方程中任選三個,并用適當(dāng)?shù)姆椒ń膺@三個方程.
(1)x2﹣x﹣1=0;
(2)(y﹣2)2﹣12=0;
(3)(1+m)2=m+1;
(4)t2﹣4t=5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一小長假的某一天,亮亮全家上午時自駕小汽車從家里出發(fā),到某旅游景點游玩,該小汽車離家的距離(千米)與時間(時)之間的關(guān)系如圖所示,根據(jù)圖像提供的有關(guān)信息,判斷下列說法錯誤的是( )
A.景點離亮亮的家千米
B.亮亮到家的時間為時
C.小汽車返程的速度為千米/時
D.時至時,小汽車勻速行駛
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com