【題目】(2016廣東省梅州市第24題)(為方便答題,可在答題卡上畫出你認(rèn)為必要的圖形)
如圖,在平面直角坐標(biāo)系中,已知拋物線過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是,點(diǎn)C的坐標(biāo)是,動(dòng)點(diǎn)P在拋物線上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
【答案】(1)、-2,-3,(-1,0);(2)、(1,-4)或(-2,5);(3)、(,)或(,)
【解析】
試題分析:(1)、根據(jù)題意得出答案;(2)、分以點(diǎn)C為直角頂點(diǎn)和點(diǎn)A為直角頂點(diǎn)兩種情況分別進(jìn)行計(jì)算;兩種情況都根據(jù)等腰直角三角形的性質(zhì)得出點(diǎn)的坐標(biāo);(3)、根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短,根據(jù)OC=OA=3,OD⊥AC得出 D是AC的中點(diǎn),從而得出點(diǎn)P的縱坐標(biāo),然后根據(jù)題意得出方程,從而求出點(diǎn)P的坐標(biāo).
試題解析:(1)、,, (-1,0).
(2)、存在.
第一種情況,當(dāng)以C為直角頂點(diǎn)時(shí),過(guò)點(diǎn)C作CP1⊥AC,交拋物線于點(diǎn)P1.過(guò)點(diǎn)P1作y軸的垂線,垂足是M.
∵OA=OC,∠AOC =90° ∴∠OCA=∠OAC=45°. ∵∠ACP1=90°, ∴∠MCP1 =90°-45°=45°=∠C P1M.
∴MC=MP1. 由(1)可得拋物線為.
設(shè),則, 解得:(舍去),.
∴. 則P1的坐標(biāo)是.
第二種情況,當(dāng)以A為直角頂點(diǎn)時(shí),過(guò)點(diǎn)A作AP2⊥AC,交拋物線于點(diǎn)P2,過(guò)點(diǎn)P2作y軸的垂線,垂足是N,AP2交y軸于點(diǎn)F. ∴P2N∥x軸. 由∠CAO=45°, ∴∠OAP2=45°. ∴∠FP2N=45°,AO=OF=3.
∴P2N=NF. 設(shè),則. 解得:(舍去),.
∴, 則P2的坐標(biāo)是.
綜上所述,P的坐標(biāo)是或
(3)、連接OD,由題意可知,四邊形OFDE是矩形,則OD=EF.
根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短. 由(1)可知,在Rt△AOC中,
∵OC=OA=3,OD⊥AC, ∴ D是AC的中點(diǎn). 又∵DF∥OC, ∴.
∴點(diǎn)P的縱坐標(biāo)是 則, 解得:.
∴當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由同一張底片沖洗出來(lái)的兩張五寸照片的圖案 全等圖形,而由同一張底片沖洗出來(lái)的五寸照片和七寸照片 全等圖形(填“是”或“不是”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,已知AD>AB.
(1)實(shí)踐與操作:作∠BAD的平分線交BC于點(diǎn)E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.2a+a2=3a3
B.a6÷a2=a3
C.(a2)3=a6
D.3a2﹣2a=a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)選擇一組你自己所喜歡的a,b,c的值,使二次函數(shù)y=ax2+bx+c(a≠0)的圖象同時(shí)足下列條件:①開口向下,②當(dāng)x<﹣2時(shí),y隨x的增大而增大;當(dāng)x>﹣2時(shí),y隨x的增大而減。@樣的二次函數(shù)的解析式可以是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016廣東省梅州市第19題)
如圖,已知在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)的圖象上.一次函數(shù)的圖象過(guò)點(diǎn)A,且與反比例函數(shù)圖象的另一交點(diǎn)為B.
(1)求和的值;
(2)設(shè)反比例函數(shù)值為,一次函數(shù)值為,求時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時(shí)間后得到如下數(shù)據(jù):
銷售單價(jià)x(元/kg) | 120 | 130 | … | 180 |
每天銷量y(kg) | 100 | 95 | … | 70 |
設(shè)y與x的關(guān)系是我們所學(xué)過(guò)的某一種函數(shù)關(guān)系.
(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)銷售單價(jià)為多少時(shí),銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com