【題目】已知點A(a﹣1,a+1)在x軸上,則a=

【答案】-1
【解析】解:∵點A(a﹣1,a+1)在x軸上,∴a+1=0,解得a=﹣1.故答案填﹣1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的周長為16cm,AC、BD相交于點O,OE⊥AC交AD于E,則△DCE的周長為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家預測一種應季襯衫能暢銷市場,就用13 200元購進了一批這種襯衫,面市后果然供不應求,商家又用28 800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.

(1)該商家購進的第一批襯衫是多少件?

(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完利潤率不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畢達哥拉斯學派對”數(shù)”與”形”的巧妙結(jié)合作了如下研究:

名稱及圖形
幾何點數(shù)
層數(shù)

三角形數(shù)

正方形數(shù)

五邊形數(shù)

六邊形數(shù)

第一層幾何點數(shù)

1

1

1

1

第二層幾何點數(shù)

2

3

4

5

第三層幾何點數(shù)

3

5

7

9

第六層幾何點數(shù)

第n層幾何點數(shù)

請寫出第六層各個圖形的幾何點數(shù),并歸納出第n層各個圖形的幾何點數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解外來務工子女就學情況,某校對七年級各班級外來務工子女的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班級中外來務工子女的人數(shù)有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅統(tǒng)計圖:

(1)求該校七年級平均每個班級有多少名外來務工子女?并將該條形統(tǒng)計圖補充完整;

(2)學校決定從只有2名外來務工子女的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名外來務工子女來自同一個班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.

(1)求拋物線的解析式a,b,c;

(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;

(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在求出點M坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )
A.a3﹣a2=a
B.2a2+3a2=5a2
C.2a2﹣a2=1
D.a2+2a3=3a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七年級教材在圖形與幾何部分給出了五條基本事實,在《證明》一章中我們從兩條基本事實出發(fā),把前面得到的平行線相關性質(zhì)進行了嚴格的證明,體會了數(shù)學的公里化思想.請完成下列證明活動:
(1)活動 .利用基本事實證明:“兩直線平行,同位角相等”.(在括號內(nèi)填上相應的基本事實)

已知:如圖,直線 、 被直線 所截, .
求證: .
證明:假設 ,則可以過點 .

).
∴過 點存在兩條直線 、 兩條直線與 平行,這與基本事實()矛盾.
∴假設不成立.
.
(2)活動 .利用剛剛證明的“兩直線平行,同位角相等”證明“兩直線平行,同旁內(nèi)角互補”.(要求畫圖,寫出已知、求證并寫出證明過程)
已知:.
求證:.
證明: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】-6的相反數(shù)等于__________

查看答案和解析>>

同步練習冊答案