【題目】已知二次函數(shù)y=ax2+bx+c(a<0,b,c為常數(shù))的圖象如圖所示,下列5個結論:①abc<0;②b<a+c;③4a+2b+c>0;④3b>2c;⑤a+b>m(am+b)(m為常數(shù),且m≠1),其中正確的結論有_____.
【答案】①③④⑤
【解析】
根據拋物線開口方向可以判定a的符號,根據對稱軸位置和a的符號可以確定b的符號,根據拋物線與y軸交點可確定c的符號,根據韋達定理可確定a與b和a與c的關系,根據二次函數(shù)圖象與各項系數(shù)關系進行解答即可.
解:由圖象可得,
a<0,b>0,c>0,
∴abc<0,故①正確,
當x=﹣1時,y=a﹣b+c<0,則b>a+c,故②錯誤,
∵對稱軸為直線x=1,
∴x=0時和x=2時的函數(shù)值相等,當x=2時,y=4a+2b+c>0,故③正確,
∵1,則b=﹣2a,
∵x=﹣1時,y=a﹣b+c<0,
∴2a﹣2b+2c<0,故﹣3b+2c<0,
∴3b>2c,故④正確,
∵當x=1時,此函數(shù)取得最大值,此時y=a+b+c=1,
∴當x=m≠1時,am2+bm+c<a+b+c,
∴m(am+b)<a+b,故⑤正確,
故答案為:①③④⑤.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點,點P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點A運動,點Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點B運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設它們的運動時間為t秒。
(1)若a=,t=2,求證:△ABC∽△PBQ(2)若a=2,那么t為何值時,以 B、P、Q為頂點的三角形與△ABD相似?說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生上課時注意力集中的程度可以用注意力指數(shù)表示.某班學生在一節(jié)數(shù)學課中的注意力指數(shù)隨上課時間(分鐘)的變化圖象如圖.上課開始時注意力指數(shù)為30,第10分鐘時注意力指數(shù)為80,前10分鐘內注意力指數(shù)是時間的一次函數(shù).10分鐘以后注意力指數(shù)是的反比例函數(shù).
(1)求出時和時,求關于的函數(shù)關系式;
(2)如果講解一道較難的數(shù)學題要求學生的注意力指數(shù)不小于50,為了保證教學效果本節(jié)課講完這道題不能超過多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若實數(shù)a,b滿足a+b=1時,就稱點P(a,b)為“平衡點”.
(1)判斷點A(3,﹣4)、B(-1,2-)是不是平衡點;
(2)已知拋物線y=x2+(p﹣t﹣1)x+q+t﹣3(t>3)上有且只有一個“平衡點”,且當﹣2≤p≤3時,q的最小值為t,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,正方形ABCD的對角線AC,BD相交于點O,點E為AB上一點(不與A.B兩點重合),過點O,A,E的⊙I交AD于F,AB=5
(1)求⊙I的直徑的取值范圍;
(2)若⊙I的半徑為2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經過點A(-3,0),其對稱軸為直線x=-1,有下列結論:①abc<0;②a-b-2c>0;③關于的方程ax2+(b-m)x+c=m有兩個不相等的實數(shù)根;④若,是拋物線上兩點,且,則實數(shù)的取值范圍是.其中正確結論的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“只要人人獻出一點愛,世界將變成美好的人間”.某大學利用“世界獻血日”開展自愿義務獻血活動,經過檢測,獻血者血型有“A、B、AB、O”四種類型,隨機抽取部分獻血結果進行統(tǒng)計,根據結果制作了如圖兩幅不完整統(tǒng)計圖表(表,圖):
血型統(tǒng)計表
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)本次隨機抽取獻血者人數(shù)為 人,圖中m= ;
(2)補全表中的數(shù)據;
(3)若這次活動中該校有1300人義務獻血,估計大約有多少人是A型血?
(4)現(xiàn)有4個自愿獻血者,2人為O型,1人為A型,1人為B型,若在4人中隨機挑選2人,利用樹狀圖或列表法求兩人血型均為O型的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E,F分別是DC和CB的延長線上的點,且BF=DE,連接AE,AF,EF.
(1)判斷△ABF與△ADE有怎樣的關系,并說明理由;
(2)求∠EAF的度數(shù),寫出△ABF可以由△ADE經過怎樣的圖形變換得到;
(3)若BC=6,DE=2,求△AEF的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com