【題目】已知,△ABC是等邊三角形,將直角三角板DEF如圖放置,其中∠F=30°,讓△ABC在直角三角板的邊EF上向右平移(點C與點F重合時停止).
(1)如圖1,當(dāng)點B與點E重合時,點A恰好落在直角三角板的斜邊DF上,證明:EF=2BC.
(2)在△ABC平移過程中,AB,AC分別與三角板斜邊的交點為G、H,如圖2,線段EB=AH是否始終成立?如果成立,請證明;如果不成立,請說明理由.
【答案】(1)見解析;(2)成立.理由見解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì),得∠ACB=60°,AC=BC.結(jié)合三角形外角的性質(zhì),得∠CAF=60°30°=30°,則CF=AC,從而證明結(jié)論;
(2)根據(jù)(1)中的證明方法,得到CH=CF.根據(jù)(1)中的結(jié)論,知EB+CF=AC,從而證明結(jié)論.
(1)∵△ABC是等邊三角形,
∴∠ACB=60°,AC=BC,
∵∠F=30°,
∴∠CAF=60°﹣30°=30°,
∴∠CAF=∠F,
∴CF=AC,
∴CF=AC=EC,
∴EF=2BC;
(2)線段EB=AH始終成立,
理由如下:
∵△ABC是等邊三角形,
∴∠ACB=60°,AC=BC,
∵∠F=30°,
∴∠CHF=60°﹣30°=30°,
∴∠CHF=∠F,
∴CH=CF,
∵EF=2BC,
∴EB+CF=BC,
又∵AH+CH=AC,AC=BC,
∴EB=AH.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時,四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結(jié)論中正確的是( )
A. ②③ B. ②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)設(shè)x1,x2分別是方程的兩個根,且滿足x12+x22=x1x2+10,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,DE、BC的延長線相交于點F,且.
(1)求證;
(2)當(dāng)AB=12,AC=9,AE=8時,求BD的長與的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM.下列結(jié)論:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正確的是____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣2,3)、B(4,3).C(﹣1,﹣3)
(1)點B到坐標(biāo)原點的距離為 ;
(2)求BC的長;
(3)點P在y軸上,當(dāng)△ABP的面積為6時,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個Rt△BA1B1,以A1B1為直角邊作第三個Rt△A1B1A2,…,依此規(guī)律,得到Rt△B2018A2019B2019,則點B2019的縱坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是以∠C為直角的直角三角形,且BC=1,AC=,圓O是△ABC的外接圓,過△ABC的內(nèi)角∠C作角平分線交AB于點D,交圓O與點E,連接AE,
(1)求AE的長.
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com