【題目】有一種升降熨燙臺(tái)如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調(diào)整熨燙臺(tái)的高度.圖2是這種升降熨燙臺(tái)的平面示意圖.ABCD是兩根相同長度的活動(dòng)支撐桿,點(diǎn)O是它們的連接點(diǎn),OA=OC,hcm)表示熨燙臺(tái)的高度.

1)如圖21.若AB=CD=110cm,∠AOC=120°,求h的值;

2)愛動(dòng)腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺(tái)的高度為120cm時(shí),兩根支撐桿的夾角∠AOC74°(如圖22).求該熨燙臺(tái)支撐桿AB的長度(結(jié)果精確到lcm).

(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)

【答案】155;(2150cm

【解析】

1)作BEACE,利用等腰三角形的性質(zhì)求得∠OAC,然后解直角三角形即可求解;

2)作BEACE,利用等腰三角形的性質(zhì)求得∠OAC,解直角三角形即可求解.

1)過點(diǎn)BBEACE,

OA=OC,∠AOC=120°,

∴∠OAC=∠OCA==30°,

h=BE=ABsin30°=110×=55;

2)過點(diǎn)BBEACE,

OA=OC,∠AOC=74°,

∴∠OAC=∠OCA==53°,

AB=BE÷sin53°=120÷0.8=150cm),

即該熨燙臺(tái)支撐桿AB的長度約為150cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為加快5G網(wǎng)絡(luò)建設(shè),某通信公司在一個(gè)坡度i12.4的山坡AB上建了一座信號(hào)塔CD,信號(hào)塔底端C到山腳A的距離AC13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測得信號(hào)塔頂端D的仰角為37°(信號(hào)塔及山坡的剖面和建筑物的剖面在同一平面上),則信號(hào)塔CD的高度約是( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

A.22.5B.27.5C.32.5D.45.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和點(diǎn)A1.

1)畫出一個(gè)格點(diǎn)△A1B1C1,并使它與△ABC全等且AA1是對應(yīng)點(diǎn);

2)畫出點(diǎn)B關(guān)于直線AC的對稱點(diǎn)D,并指出AD可以看作由ABA點(diǎn)經(jīng)過怎樣的旋轉(zhuǎn)而得到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)Bx軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形具有不穩(wěn)定性,對于四條邊長確定的四邊形.當(dāng)內(nèi)角度數(shù)發(fā)生變化時(shí),其形狀也會(huì)隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABCD.若DAB30°,則菱形ABCD的面積與正方形ABCD的面積之比是( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校團(tuán)委為了解該校七年級(jí)學(xué)生最喜歡的課余活動(dòng)情況,采用隨機(jī)抽樣的方法進(jìn)行了問卷調(diào)查,被調(diào)查學(xué)生必須從運(yùn)動(dòng)、娛樂、閱讀、其他四項(xiàng)中選擇其中的一項(xiàng),以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分,

活動(dòng)類型

頻數(shù)(人數(shù))

頻率

運(yùn)動(dòng)

20

娛樂

40

閱讀

其他

0.1

根據(jù)以上圖表信息,解答下列問題:

1)在被調(diào)查的學(xué)生中,最喜歡運(yùn)動(dòng)的學(xué)生人數(shù)為 人,最喜歡娛樂的學(xué)生人數(shù)占被調(diào)查學(xué)生人數(shù)的百分比為 %.

2)本次調(diào)查的樣本容量是 ,最喜歡其他的學(xué)生人數(shù)為 .

3)若該校七年級(jí)共有360名學(xué)生,試估計(jì)最喜歡閱讀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

2+22=232;

2+22+23=242;

2+22+23+24=252;

2+22+23+24+25=262;

已知按一定規(guī)律排列的一組數(shù):220221,222,223,224,,238239,240,若220=m,則220+221+222+223+224+…+238+239+240=_____(結(jié)果用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)數(shù)學(xué)小組經(jīng)過市場調(diào)查,得到某種運(yùn)動(dòng)服的月銷量y(件)是售價(jià)x(元/件)的一次函數(shù),其售價(jià)、月銷售量、月銷售利潤w(元)的三組對應(yīng)值如下表:

售價(jià)x/件)

120

160

190

月銷售量y(件)

260

180

120

月銷售利潤w(元)

5200

10800

10800

注:月銷售利潤月銷售量×(售價(jià)進(jìn)價(jià))

1)求y關(guān)于x的函數(shù)解析式(不要求寫出自變量的取值范圍).

2)求當(dāng)售價(jià)為多少元時(shí),月銷售利潤最大,并求最大利潤是多少?

3)由于某種原因,該商品進(jìn)價(jià)降低了m/,商家規(guī)定該運(yùn)動(dòng)服售價(jià)不得低于180/件,該商店在今后的銷售中,月銷售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若月銷售最大利潤是14000元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC,BDO的兩條直徑,連接ABBC,OEAB于點(diǎn)E,點(diǎn)F是半徑OC的中點(diǎn),連接EF

1)設(shè)O的半徑為1,若BAC30°,求線段EF的長.

2)連接BF,DF,設(shè)OBEF交于點(diǎn)P,

求證:PEPF

DFEF,求BAC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案