【題目】已知如圖,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,則△ADE的面積為( )
A.1 B.2 C.5 D.無法確定
【答案】A
【解析】
試題分析:因為知道AD的長,所以只要求出AD邊上的高,就可以求出△ADE的面積.過D作BC的垂線交BC于G,過E作AD的垂線交AD的延長線于F,構造出Rt△EDF≌Rt△CDG,求出GC的長,即為EF的長,然后利用三角形的面積公式解答即可.
解:過D作BC的垂線交BC于G,過E作AD的垂線交AD的延長線于F,
∵∠EDF+∠FDC=90°,
∠GDC+∠FDC=90°,
∴∠EDF=∠GDC,
于是在Rt△EDF和Rt△CDG中,
,
∴△DEF≌△DCG,
∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,
所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,共享單車在余姚的大街小巷隨處看見,解決了很多人的交通出行問題,李老師早上騎單車上班,中途因道路施工推車步行了一段路,到學校共用時15分鐘,如果他騎單車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,求他推車步行了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點O為圓心的圓經(jīng)過A、D兩點,且,圓心O到弦AD的距離是____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線AB∥CD,E為直線AB、CD之間的一點.
(1)如圖1,若∠B=15°,∠BED=90°,則∠D=°;
(2)如圖2,若∠B=α,∠D=β,則∠BED=;
(3)如圖3,若∠B=α,∠C=β,則α、β與∠BEC之間有什么等量關系?請猜想證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,電線桿CD上的C處引拉線CE,CF固定電線桿,在離電線桿6米的B處安置測角儀(點B,E,D在同一直線上),在A處測得電線桿上C處的仰角為30°,已知測角儀的高AB=1.5米,BE=2.3米,求拉線CE的長,(精確到0.1米)參考數(shù)據(jù)≈1.41,≈1.73.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校興趣小組想測量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1:.在離C點40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com