【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí)min{a,b}=b;當(dāng)a<b時(shí)min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是(
A.
B.
C.1
D.0

【答案】A
【解析】解:在同一坐標(biāo)系xOy中,畫(huà)出函數(shù)二次函數(shù)y=﹣x2+1與正比例函數(shù)y=﹣x的圖象,如圖所示.設(shè)它們交于點(diǎn)A、B. 令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=
∴A( , ),B( ).
觀察圖象可知:
① 當(dāng)x≤ 時(shí),min{﹣x2+1,﹣x}=﹣x2+1,函數(shù)值隨x的增大而增大,其最大值為
②當(dāng) <x< 時(shí),min{﹣x2+1,﹣x}=﹣x,函數(shù)值隨x的增大而減小,其最大值為
③當(dāng)x≥ 時(shí),min{﹣x2+1,﹣x}=﹣x2+1,函數(shù)值隨x的增大而減小,最大值為
綜上所示,min{﹣x2+1,﹣x}的最大值是
故選:A.

理解min{a,b}的含義就是取二者中的較小值,畫(huà)出函數(shù)圖象草圖,利用函數(shù)圖象的性質(zhì)可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)計(jì)劃把甲種貨物1240噸和乙種貨物880噸用一列貨車(chē)運(yùn)往某地,已知這列貨車(chē)掛在A、B兩種不同規(guī)格的貨車(chē)廂共40節(jié),使用A型車(chē)廂每節(jié)費(fèi)用為6000元,使用B型車(chē)廂每節(jié)費(fèi)用為8000.

1)設(shè)運(yùn)送這批貨物的總費(fèi)用為y萬(wàn)元,這列貨車(chē)掛A型車(chē)廂x 節(jié),試定出用車(chē)廂節(jié)數(shù)x表示總費(fèi)用y的公式.

2)如果每節(jié)A型車(chē)廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車(chē)廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時(shí)按此要求安排A、B兩種車(chē)廂的節(jié)數(shù),那么共有哪幾種安排車(chē)廂的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù) 的圖象相交于C,D兩點(diǎn),分別過(guò)C,D兩點(diǎn)作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個(gè)結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( )

A.①②
B.①②③
C.①②③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)、外語(yǔ)、語(yǔ)文及其他學(xué)科中,某校七年級(jí)開(kāi)展了“同學(xué)們最喜歡哪門(mén)學(xué)科”的調(diào)查(該校七年級(jí)共有200人,每人只能選一項(xiàng)).

(1)調(diào)查的問(wèn)題是什么?調(diào)查的對(duì)象是誰(shuí)?

(2)在被調(diào)查的200名學(xué)生中,有40人最喜歡語(yǔ)文,60人最喜歡數(shù)學(xué),80人最喜歡外語(yǔ),其余的人選擇其他.請(qǐng)把七年級(jí)的學(xué)生最喜歡某學(xué)科的人數(shù)及其占學(xué)生總數(shù)的百分比填入下表:

語(yǔ)文

外語(yǔ)

數(shù)學(xué)

其他

人數(shù)

占學(xué)生總數(shù)的百分比

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,O為△ABC的三條角平分線的交點(diǎn),ODBC,OEAC,OFAB,點(diǎn)D、E、F分別是垂足,且BC8cm,CA6cm,則點(diǎn)O到邊AB的距離為(  )

A. 2cm B. 3cm C. 4cm D. 5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某海域有A、B、C三艘船正在捕魚(yú)作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號(hào),此時(shí)B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時(shí)又位于B船的北偏東78°方向.

(1)求∠ABC的度數(shù);
(2)A船以每小時(shí)30海里的速度前去救援,問(wèn)多長(zhǎng)時(shí)間能到出事地點(diǎn).(結(jié)果精確到0.01小時(shí)).
(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點(diǎn)C是弧AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連結(jié)DE,點(diǎn)F在線段DE上,且EF=2DF,過(guò)點(diǎn)C的直線CG交OA的延長(zhǎng)線于點(diǎn)G,且∠CGO=∠CDE.
(1)求證:CG與弧AB所在圓相切.
(2)當(dāng)點(diǎn)C在弧AB上運(yùn)動(dòng)時(shí),△CFD的三條邊是否存在長(zhǎng)度不變的線段?若存在,求出該線段的長(zhǎng)度;若不存在,說(shuō)明理由.
(3)若∠CGD=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx-3經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于C點(diǎn),

(1)求拋物線的解析式;
(2)如圖①,拋物線的對(duì)稱(chēng)軸上有一點(diǎn)P,且點(diǎn)P在x軸下方,線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在拋物線上,求點(diǎn)P的坐標(biāo);
(3)如圖②,直線y= x+ 交拋物線于A、E兩點(diǎn),點(diǎn)D為線段AE上一點(diǎn),連接BD,有一動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),沿線段BD以每秒1個(gè)單位的速度運(yùn)動(dòng)到D,再沿DE以每秒鐘2個(gè)單位的速度運(yùn)動(dòng)到E,問(wèn):是否存在點(diǎn)D,使點(diǎn)Q從點(diǎn)B到E的運(yùn)動(dòng)時(shí)間最少,若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交直線BC于點(diǎn)D,連接PC.

(1)試求拋物線的解析式;
(2)如圖2,當(dāng)動(dòng)點(diǎn)P只在第一象限的拋物線上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,試問(wèn)△PFD的周長(zhǎng)是否有最大值?如果有,請(qǐng)求出最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P在拋物線上運(yùn)動(dòng)時(shí),將△CPD沿直線CP翻折,點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,試問(wèn),四 邊形CDPQ能否成為菱形?如果能,請(qǐng)求此時(shí)點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案