【題目】我們規(guī)定,若關于的一元一次方程的解為,則稱該方程為“奇異方程”.例如:的解為,則該方程是“奇異方程”.請根據(jù)上述規(guī)定解答下列問題:

(Ⅰ)判斷方程________(回答“是”或“不是”)“奇異方程”;

(Ⅱ)若,有符合要求的“奇異方程”嗎?若有,求的值;若沒有,請說明理由.

(Ⅲ)若關于的一元一次方程都是“奇異方程”,求代數(shù)式+的值.

【答案】(Ⅰ)不是;(Ⅱ)時有符合要求的“奇異方程”;(Ⅲ)

【解析】

)解方程,并計算對應b-a的值與方程的解不相等,所以不是奇異方程;

)根據(jù)奇異方程的定義即可得出關于b的方程,解方程即可;

)根據(jù)奇異方程的概念列式得到關于m、n的兩個方程,聯(lián)立求解得到m、n的關系,然后代入化簡后的代數(shù)式進行計算即可求解.

):∵,

,

,

不是奇異方程;

故答案為:不是;

)∵,

3x=b,解得,x=

若方程3x=b有符合要求的奇異方程

,

,

時有符合要求的奇異方程;

)關于的一元一次方程都是奇異方程,則有:

,

整理得:,

兩式相減得,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,CDABD,∠BAC的平分線分別交BC,CDE、F

1)試說明△CEF是等腰三角形.

2)若點E恰好在線段AB的垂直平分線上,試說明線段AC與線段AB之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名射擊選手在10次射擊訓練中的成績統(tǒng)計圖(部分)如圖所示:

教練根據(jù)甲、乙兩名射擊選手的成績繪制了如下數(shù)據(jù)分析表:

選手

平均數(shù)

中位數(shù)

眾數(shù)

方差

8

8

c

7. 5

69

2. 65

根據(jù)以上信息,請解答下面的問題:

1)補全甲選手10次成績頻數(shù)分布圖;

2)求的值;

3)教練根據(jù)兩名選手的10次成績,決定選擇甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在處,BC為折痕。

(1)圖①中,若∠1=30°,求∠的度數(shù);

(2)如果又將活頁的另一角斜折過去,使BD邊與BA重合,折痕為BE,如圖②所示,∠1=30°,求∠2以及∠的度數(shù);

(3)如果在圖②中改變∠1的大小,則的位置也隨之改變,那么問題(2)中∠的大小是否改變?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點.

(1)求證:AB是⊙O的直徑;

(2)判斷DE與⊙O的位置關系,并加以證明;

(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上的點AB,CD,E表示連續(xù)的五個整數(shù),對應的數(shù)分別為a,b,cd,e

(1)a=3,則e = ;

(2)ae=0,則代數(shù)式bcd= ;

(3)d是最大的負整數(shù),求代數(shù)式的值(寫出求解過程).

(4)e=4,F也為數(shù)軸上一點,且BE=2FE,則F表示的數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中:①過一點有且只有一條直線與已知直線平行;②過一點有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結、兩點的線段就是兩點之間的距離,其中正確的有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.

請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

(1)本次抽樣調查共抽取了   名學生?測試結果為C等級的學生數(shù)是   ,并補全條形圖;

(2)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩名恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為等邊三角形ABC內(nèi)的一點, DA=5,DB=4,DC=3,將線段AD以點A為旋轉中心逆時針旋轉60°得到線段AD',下列結論:①點D與點D'的距離為5;②∠ADC=150°;③△ACD'可以由△ABD繞點A逆時針旋轉60°得到;④點DCD'的距離為3;S四邊形ABCD′=6+ ,其中正確的有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習冊答案