【題目】如圖,AB∥CD,直線EF與AB,CD分別交于點(diǎn)M,N,過(guò)點(diǎn)N的直線GH與AB交于點(diǎn)P,則下列結(jié)論錯(cuò)誤的是(
A.∠EMB=∠END
B.∠BMN=∠MNC
C.∠CNH=∠BPG
D.∠DNG=∠AME

【答案】D
【解析】解:A、∵AB∥CD, ∴∠EMB=∠END(兩直線平行,同位角相等);
B、∵AB∥CD,
∴∠BMN=∠MNC(兩直線平行,內(nèi)錯(cuò)角相等);
C、∵AB∥CD,
∴∠CNH=∠MPN(兩直線平行,同位角相等),
∵∠MPN=∠BPG(對(duì)頂角),
∴∠CNH=∠BPG(等量代換);
D、∠DNG與∠AME沒(méi)有關(guān)系,
無(wú)法判定其相等.
故選D.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì),需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCDEF,相似比為94,則ABCDEF對(duì)應(yīng)中線的比為( 。

A.94B.49C.8116D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=BD;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合), BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD中,∠A+C=200°,則∠B的度數(shù)是( )

A. 100° B. 160° C. 80° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組線段長(zhǎng)度成比例的是( )
A.1㎝,2㎝,3㎝,4㎝
B.1㎝,3㎝,4.5㎝,6.5㎝
C.1.1㎝,2.2㎝,3.3㎝,4.4㎝
D.1㎝,2㎝,2㎝,4㎝

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2﹣4x+5的最小值是(
A.﹣1
B.1
C.3
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上.其中,A點(diǎn)坐標(biāo)為(2, ﹣1),將△ABC向右平移3個(gè)單位,再向下平移2個(gè)單位得到△A1B1C1 ,

(1)畫出平移后的圖形;
(2)寫出A1、B1、C1的坐標(biāo);、
(3)求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O分別交線段BC,AC于點(diǎn)D,E,過(guò)點(diǎn)D作DFAC,垂足為F,線段FD,AB的延長(zhǎng)線相交于點(diǎn)G.

(1)求證:DF是O的切線;

(2)若CF=1,DF=,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案