在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B(3,0),將點(diǎn)B向右平移3個單位得點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)M在線段OC上,平面內(nèi)有一點(diǎn)Q,使得四邊形ABMQ為菱形,求點(diǎn)M坐標(biāo);
(3)點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動,過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動時,點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動);
①當(dāng)點(diǎn)E在二次函數(shù)的圖像上時,求OP的長;
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動,速度為每秒1個單位長度,若P點(diǎn)運(yùn)動t秒時,直線AC與以DE為直徑的⊙M相切,直接寫出此刻t的值.

(1)y=-x2+3x;(2)(1,0)或(3-2,0)或(3+2,0);(3).

解析試題分析:(1)可設(shè)二次函數(shù)的解析式為y=ax2+bx+c,利用二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),B(3,0),分別代入求出a,b,c的值即可;
(2)分M是AB的垂直平分線與x軸的交點(diǎn);M在B點(diǎn)左邊并且BM=AB;M在B點(diǎn)右邊并且BM=AB;三種情況討論可得點(diǎn)M坐標(biāo);
(3)①過A點(diǎn)作AH⊥x軸于H點(diǎn),根據(jù)DP∥AH,得出△OPD∽△OHA,進(jìn)而求出OP的長;
②分兩種情況討論,求出t的值即可.
試題解析:(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+c,
∵二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),B(3,0),

解得
故二次函數(shù)解析式為:y=-x2+3x;
(2)M是AB的垂直平分線與x軸的交點(diǎn),點(diǎn)M坐標(biāo)是(1,0);
M在B點(diǎn)左邊并且BM=AB,點(diǎn)M坐標(biāo)是(3-2,0);
M在B點(diǎn)右邊并且BM=AB,點(diǎn)M坐標(biāo)是(3+2,0);
故點(diǎn)M坐標(biāo)為(1,0)或(3-2,0)或(3+2,0);
(3)①由已知可得C(6,0)
如圖:過A點(diǎn)作AH⊥x軸于H點(diǎn),
∵DP∥AH,
∴△OPD∽△OHA,

,
∴PD=2a,
∵正方形PDEF,
∴E(3a,2a),
∵E(3a,2a)在二次函數(shù)y1=-x2+3x的圖象上,
∴a=
即OP=
②直線AC與以DE為直徑的⊙M相切,此刻t的值為:.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個二次函數(shù)圖象的對稱軸上.若四邊形是一個邊長為2且有一個內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)的頂點(diǎn)為P.
(1)請直接寫出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線與拋物線L2交于E,F(xiàn)兩點(diǎn),問線段EF的長度是否發(fā)生變化?如果不發(fā)生變化,請求出EF的長度;如果發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直角梯形OABC中,AB∥OC,點(diǎn)A坐標(biāo)為(0,6),點(diǎn)C坐標(biāo)為(3,0),BC=,一拋物線過點(diǎn)A、B、 C.
(1)填空:點(diǎn)B的坐標(biāo)為   ;
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點(diǎn)E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,6).動點(diǎn)Q從點(diǎn)O、動點(diǎn)P從點(diǎn)A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運(yùn)動,運(yùn)動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點(diǎn)分別為C、D,連接CD、QC.
(1)求當(dāng)t為何值時,點(diǎn)Q與點(diǎn)D重合?
(2)設(shè)△QCD的面積為S,試求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點(diǎn),請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某菜農(nóng)搭建了一個橫截面為拋物線的大棚,尺寸如圖:

(1)如圖建立平面直角坐標(biāo)系,使拋物線對稱軸為y軸,求該拋物線的解析式;
(2)若需要開一個截面為矩形的門(如圖所示),已知門的高度為1.60米,那么門的寬度最大是多少米(不考慮材料厚度)?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過A(-1,0),B(3,0),C(0,-3)三點(diǎn),求這個二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案