(2002•桂林)在平面直角坐標(biāo)內(nèi),⊙P的圓心P的坐標(biāo)為(8,0),半徑是6,那么直線y=x與⊙P的位置關(guān)系是   
【答案】分析:首先根據(jù)等腰直角三角形的性質(zhì)求得圓心到直線的距離,再根據(jù)數(shù)量關(guān)系進(jìn)行判斷位置關(guān)系.
如果圓的半徑為R,圓心到直線的距離為d,當(dāng)d>R時(shí),直線與圓相離,d=R時(shí),相切,d<R時(shí),相交.
解答:解:如圖,過P點(diǎn)作直線y=x的垂線,垂足為M.
∵∠MOP=45°,
∴在Rt△MOP中,PM=OP•sin45°=8×=4<6,
故直線與圓相交.
點(diǎn)評(píng):本題考查了用數(shù)量關(guān)系表示直線與圓的三種位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2002•桂林)某單位為響應(yīng)政府發(fā)出的全民健身的號(hào)召,打算在長和寬分別為20m和11m的矩形大廳內(nèi)修建一個(gè)60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側(cè)沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費(fèi)用為20元/m2,新建(含裝修)墻壁的費(fèi)用為80元/m2.設(shè)健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當(dāng)投入的資金為4800元時(shí),問利用舊墻壁的總長度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•桂林)某單位為響應(yīng)政府發(fā)出的全民健身的號(hào)召,打算在長和寬分別為20m和11m的矩形大廳內(nèi)修建一個(gè)60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側(cè)沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費(fèi)用為20元/m2,新建(含裝修)墻壁的費(fèi)用為80元/m2.設(shè)健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當(dāng)投入的資金為4800元時(shí),問利用舊墻壁的總長度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2002•桂林)在平面直角坐標(biāo)內(nèi),⊙P的圓心P的坐標(biāo)為(8,0),半徑是6,那么直線y=x與⊙P的位置關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•桂林)在平面直角坐標(biāo)內(nèi),⊙P的圓心P的坐標(biāo)為(8,0),半徑是6,那么直線y=x與⊙P的位置關(guān)系是   

查看答案和解析>>

同步練習(xí)冊答案