分析 (1)根據(jù)四邊形ABCD是⊙O的內(nèi)接四邊形得到∠ABC+∠D=180°,根據(jù)∠ABC=2∠D得到∠D+2∠D=180°,從而求得∠D=60°,最后根據(jù)OA=OC得到∠OAC=∠OCA=30°;
(2)由∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解.
解答 解:(1)∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠ABC+∠D=180°,
∵∠ABC=2∠D,
∴∠D+2∠D=180°,
∴∠D=60°,
∴∠AOC=2∠D=120°,
∵OA=OC,
∴∠OAC=∠OCA=30°;
(2)∵∠COB=3∠AOB,
∴∠AOC=∠AOB+3∠AOB=120°,
∴∠AOB=30°,
∴∠COB=∠AOC-∠AOB=90°,
在Rt△OCE中,OC=2$\sqrt{3}$,
∴OE=OC•tan∠OCE=2$\sqrt{3}$•tan30°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=2,
∴S△OEC=$\frac{1}{2}$OE•OC=$\frac{1}{2}$×2×2$\sqrt{3}$=2$\sqrt{3}$,
∴S扇形OBC=$\frac{90π×(2\sqrt{3})^{2}}{360}$=3π,
∴S陰影=S扇形OBC-S△OEC=3π-2$\sqrt{3}$.
點(diǎn)評 本題考查了扇形面積的計(jì)算,圓內(nèi)接四邊形的性質(zhì),解直角三角形的知識,在求不規(guī)則的陰影部分的面積時常常轉(zhuǎn)化為幾個規(guī)則幾何圖形的面積的和或差.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com