如圖,由下列條件不能得到AB∥CD的是(   )   
A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠5
B

試題分析:判定兩直線平行,可通過內(nèi)錯角相等如C選項。可通過同旁內(nèi)角互補,如A選項;可通過同位角相等,如D選項。而剩下B選項只能判定AD∥BE。
點評:本題難度較低,主要考查學生對平行線判定性質(zhì)知識點的掌握。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

有三個點A、B、C,過其中每兩個點畫直線,可以畫直線(  )
A、1條    B、1條或3條   C、3條    D、不確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知直線,點在直線上,且,∠1=25°,則∠2的度數(shù)為
  
A.65°B.25° C.35°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線AB∥CD,則∠C=_______°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一副三角板疊在一起如圖放置,最小銳角的頂點D恰好放在等腰直角三角板的斜邊AB上,BC與DE交于點M.如果∠ADF=100°,那么∠BMD為(    )度.
A.85B.75C.90D.100

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學的對話:
A同學:因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學:我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學或者B同學的方法,完成解題過程.
(2)請幫C同學在圖③中畫出所有滿足條件的點D,并標出使△DBE面積最大的點D1.(保留作圖痕跡,可適當說明畫圖過程)
【解決問題】
根據(jù)對特殊情況的探究經(jīng)驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,DE∥BC,∠BGF=∠CDE,試說明FG∥CD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB∥CD,EF交CD于點H,EG⊥AB,垂足為G,已知∠CHE=120°,則∠FEG=_________________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠A=70°,∠C=60°,D、E分別是AB、AC上的點,且DE∥BC,則∠ADE的度數(shù)為

A.60°                B.70°            C.50°            D.80°

查看答案和解析>>

同步練習冊答案