【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第二象限內(nèi)的圖象相交于點(diǎn),將直線向上平移后與反比例函數(shù)圖象在第二象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為3,則直線的關(guān)系式為:________

【答案】

【解析】

用代入法求出m,再求出A的坐標(biāo),根據(jù)平移的性質(zhì)設(shè)直線BC的解析式為y=+b,連接AC,可知道三角形ACO與三角形ABO面積相等,根據(jù)三角形面積關(guān)系求出OC,從而求出截距b,可得BC解析式.

因?yàn)橹本經(jīng)過

所以,解得m=-2

所以A(-2,1)

設(shè)直線BC的解析式為y=+b,連接AC

因?yàn)橹本OA平行于BC,

所以三角形ACO與三角形ABO面積相等,

因?yàn)槿切?/span>ABO的面積為3

所以三角形ACO的面積=OC×2=3

所以OC=3,

所以b=3

所以直線BC的解析式為y=+3

故答案為:y=+3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)y=2x2﹣mx+m﹣2,以下結(jié)論:

拋物線交x軸有交點(diǎn);

不論m取何值,拋物線總經(jīng)過點(diǎn)(1,0);

若m6,拋物線交x軸于A、B兩點(diǎn),則AB>1;

拋物線的頂點(diǎn)在y=﹣2(x﹣1)2圖象上.其中正確的序號(hào)是( 。

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=60°,點(diǎn)P為射線OA上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PPEOB,交OB 于點(diǎn)E,點(diǎn)D在∠AOB內(nèi),且滿足∠DPA=OPE,DP+PE=6.

1)當(dāng)DP=PE時(shí),求DE的長;

2)在點(diǎn)P的運(yùn)動(dòng)過程中,請(qǐng)判斷是否存在一個(gè)定點(diǎn)M,使得的值不變?并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是⊙的直徑,弦,點(diǎn)在弧上(不含端點(diǎn)), 連接

1)圖中有無和相等的線段,并證明你的結(jié)論.

2)求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,CO上的點(diǎn),連接AC、CB,過OEOCB并延長EOF,使EOFO,連接AF并延長,AFCB的延長線交于D.求證:AE2FGFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線與拋物線交于兩點(diǎn),其中,.該拋物線與軸交于點(diǎn),軸交于另一點(diǎn).

(1)的值及該拋物線的解析式;

(2)如圖2.若點(diǎn)為線段上的一動(dòng)點(diǎn)(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角和等腰直角,連接,試確定面積最大時(shí)點(diǎn)的坐標(biāo).

(3)如圖3.連接、,在線段上是否存在點(diǎn),使得以為頂點(diǎn)的三角形與相似,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽葫蘆島海濱觀光一日游項(xiàng)目,團(tuán)隊(duì)人均報(bào)名費(fèi)用y(元)與團(tuán)隊(duì)報(bào)名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報(bào)名費(fèi)用不能低于88.旅行社收到的團(tuán)隊(duì)總報(bào)名費(fèi)用為w(元).

(1)直接寫出當(dāng)x≥20時(shí),yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當(dāng)天旅行社收到某個(gè)團(tuán)隊(duì)的總報(bào)名費(fèi)為3000元,報(bào)名旅游的人數(shù)是多少?

(3)當(dāng)一個(gè)團(tuán)隊(duì)有多少人報(bào)名時(shí),旅行社收到的總報(bào)名費(fèi)最多?最多總報(bào)名費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在△ABC中,ABAC10BC12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長為   

問題探究

2)如圖②,已知矩形ABCDAB4,AD6,點(diǎn)EAD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動(dòng)點(diǎn),求E、P之間的最大距離;

問題解決

3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對(duì)的劣弧場(chǎng)地組成的,果園主人現(xiàn)要從入口D上的一點(diǎn)P修建一條筆直的小路DP.已知ADBC,∠ADB45°,BD120米,BC160米,過弦BC的中點(diǎn)EEFBC于點(diǎn)F,又測(cè)得EF40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請(qǐng)你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;按照此規(guī)律,第個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為 個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案