【題目】如圖(1),在矩形中,分別是的中點(diǎn),作射線,連接.
(1)請直接寫出線段與的數(shù)量關(guān)系;
(2)將矩形變?yōu)槠叫兴倪呅危渲?/span>為銳角,如圖(2),,分別是的中點(diǎn),過點(diǎn)作交射線于點(diǎn),交射線于點(diǎn),連接,求證:;
(3)寫出與的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)MD=MC;(2)見解析;(3)∠BME=3∠AEM,證明見解析.
【解析】
(1)由“SAS”可證△ADM≌△BCM,可得MD=MC;
(2)由題意可證四邊形ADNM是平行四邊形,可得AD∥MN,可得EF=FC,MF⊥EC,由線段垂直平分線的性質(zhì)可得ME=MC;
(3)由等腰三角形的性質(zhì)和平行線的性質(zhì)可得∠BME=3∠AEM.
解:(1)∵四邊形ABCD是矩形,
∴AD=BC,∠A=∠B=90°,
∵點(diǎn)M是AB中點(diǎn),
∴AM=BM,
∴△ADM≌△BCM(SAS),
∴MD=MC;
(2)∵M、N分別是AB、CD的中點(diǎn),
∴AM=BM,CN=DN,
∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴DN=AM=CN=BM,
∴四邊形ADNM是平行四邊形,
∴AD∥MN,
∴,∠AEC=∠NFC=90°,
∴EF=CF,且MF⊥EC,
∴ME=MC;
(3)∠BME=3∠AEM,
證明:∵EM=MC,EF=FC,
∴∠EMF=∠FMC,
∵AB=2BC,M是AB中點(diǎn),
∴MB=BC,
∴∠BMC=∠BCM,
∵MN∥AD,AD∥BC,
∴AD∥MN∥BC,
∴∠AEM=∠EMF,∠FMC=∠BCM,
∴∠AEM=∠EMF=∠FMC=∠BCM=∠BMC,
∴∠BME=3∠AEM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點(diǎn)C和點(diǎn)D是⊙O上關(guān)于直線AB對稱的兩個點(diǎn),連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點(diǎn)E,過點(diǎn)C作直線CG與線段AB的延長線相交于點(diǎn)F,與直線AD相交于點(diǎn)G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點(diǎn)H為線段OB上一點(diǎn),連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=80°,∠2=100°,∠C=∠D.
(1)判斷AC與DF的位置關(guān)系,并說明理由;
(2)若∠C比∠A大20°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板的直角頂點(diǎn)O重疊在一起,
(1)如圖(1),當(dāng)OB平分∠COD時,則∠AOD和∠BOC的和是多少度?
(2)如圖(2),當(dāng)OB不平分∠COD時,則∠AOD和∠BOC的和是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E、F、G、H分別是邊AB、BC、CD和DA的中點(diǎn),連接EF、FG、GH和HE.若EH=2EF,則下列結(jié)論正確的是
A. AB=EF B. AB=2EF C. AB=EF D. AB=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聲音在空氣中傳播的速度簡稱音速,實(shí)驗(yàn)測得音速與氣溫的一些數(shù)據(jù)如下表
(1)此表反映的是變量 隨 變化的情況.
(2)請直接寫出y與x的關(guān)系式為 .
(3)當(dāng)氣溫為22℃時,某人看到煙花燃放5秒后才聽到聲響,求此人與煙花燃放所在地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90,∠ACB=30,AB=2,AD=2AC,DC=2BC.
(1)求證:△ACD為直角三角形;(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠C=30°,AB⊥AD.
(1)求∠BDA的度數(shù);
(2)若AD=2,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com