如圖,在△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB于D,則AD的長度為(  )
A.
9
5
B.
12
5
C.
16
5
D.
21
5

∵在△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB=
BC2+AC2
=
42+32
=5(勾股定理).
又∵CD⊥AB于D,
1
2
AC•BC=
1
2
AB•CD,即3×4=5CD,
解得,CD=
12
5

故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠A=90°.
(1)利用直尺和圓規(guī),作線段的垂直平分線,分別交BC、AB于點(diǎn)D、E;(保留作圖痕跡,不寫作法)
(2)根據(jù)(1)中所畫圖形,求證:BE2=AC2+AE2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠ACB=90°,AC=1,AB=3,則BC的長為( 。
A.2B.
2
C.
10
D.2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:正方體ABCD-A′B′C′D′的棱長為2cm,一只蝸牛想沿最短路線從A′點(diǎn)爬向C點(diǎn).請(qǐng)求出這條最短路線的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若直角三角形的兩直角邊分別是1和2
2
,則斜邊上的高為( 。
A.3
2
B.
1
2
2
C.
2
3
2
D.
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在四邊形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,求BC和AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)是用硬紙板做成的兩個(gè)全等的直角三角形,兩直角邊的長分別為a和b,斜邊長為c.圖(2)是以c為直角邊的等腰直角三角形.請(qǐng)你開動(dòng)腦筋,將它們拼成一個(gè)能證明勾股定理的圖形.
(1)畫出拼成的這個(gè)圖形的示意圖,指出它是什么圖形;
(2)用這個(gè)圖形證明勾股定理;
(3)假設(shè)圖(1)中的直角三角形有若干個(gè),你能運(yùn)用圖(1)中所給的直角三角形拼出另一種能證明勾股定理的圖形嗎?請(qǐng)?jiān)趫D(3)中畫出拼后的示意圖(無需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一只螞蟻欲從圓柱形桶外的A點(diǎn)爬到桶內(nèi)的B點(diǎn)處尋找食物,已知點(diǎn)A到桶口的距離AC為12cm,點(diǎn)B到桶口的距離BD為8cm,CD的長為15cm,那么螞蟻爬行的最短路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,作一個(gè)長方形OC=
2
,OB=2,以數(shù)軸的原點(diǎn)為旋轉(zhuǎn)中心,將過原點(diǎn)的對(duì)角線順時(shí)針旋轉(zhuǎn),使對(duì)角線的另一端點(diǎn)落在數(shù)軸正半軸的點(diǎn)A處,則BA的長度是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案