【題目】如圖,左右兩幅圖案關(guān)于y軸對稱,右圖案中的左右眼睛的坐標分別是(23),(43),嘴角左右端點的坐標分別是(2,1),(4,1)

(1)試確定左圖案中的左右眼睛和嘴角左右端點的坐標;

(2)從對稱的角度來考慮,說一說你是怎樣得到的;

(3)直接寫出右圖案中的嘴角左右端點關(guān)于原點的對稱點的坐標.

【答案】(1)左眼睛坐標為(4,3),右眼睛坐標為(2,3),嘴角的左端點坐標為(4,1),右端點坐標為(2,1); (2)見解析;(3) (-2,-1),(-4-1)

【解析】

1)根據(jù)圖形的位置關(guān)系可知:將右圖案向左平移6個單位長度得到左圖案等.

2)根據(jù)題意可知,這兩個圖是關(guān)于y軸對稱的,所以根據(jù)關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)可知左圖案的左右眼睛的坐標和嘴角左右端點的坐標;

3)根據(jù)兩點關(guān)于原點對稱,橫坐標互為相反數(shù),縱坐標互為相反數(shù)求解即可.

(1)左圖案中的左眼睛坐標為(4,3),右眼睛坐標為(2,3),嘴角的左端點坐標為(4,1),右端點坐標為(2,1)

(2)關(guān)于y軸對稱的兩個圖形橫坐標互為相反數(shù),縱坐標不變..

(3) (-2,-1)(-4,-1)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某花卉種植基地準備圍建一個面積為100平方米的矩形苗圃園種植玫瑰花,其中一邊靠墻,另外三邊用29米長的籬笆圍成.已知墻長為18米,為方便進入,在墻的對面留出1米寬的門(如圖所示),求這個苗圃園垂直于墻的一邊長為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:

(1)甲,乙兩組工作一天,商店各應付多少錢?

(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?

(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題:如果兩條平行線被第三條直線所截,那么一組內(nèi)錯角的平分線互相平行,如圖為符合該命題的示意圖.

1)請你根據(jù)圖形把該命題用幾何符號語言補充完整,己知:直線、被第三條直線所截,且,平分平分______,則____________

2)判斷該命題的真假,若是假命題,請舉例說明:若是真命題,請證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王曉同學要證明命題“對角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖,在平行四邊形ABCD中,

求證:平行四邊形ABCD

(1)在方框中填空,以補全已知和求證;

(2)按王曉的想法寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點A10),B0),且與y軸相交于點C

(1)求這條拋物線的表達式;

(2)求∠ACB的度數(shù);

(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當△DCE與△AOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線ABBC的路徑運動,到點C停止運動.過點E EFBD,EF與邊AD(或邊CD)交于點FEF的長度ycm)與點E的運動時間x(秒)的函數(shù)圖象大致是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標為(m,n),若點A′(m,n′)的縱坐標滿足n′=,則稱點A′是點A的“絕對點”.

(1)點(3,2)的“絕對點”的坐標為  

(2)點P是函數(shù)y=4x-1的圖象上的一點,點P′是點P的“絕對點”.若點P與點P′重合,求點P的坐標.

(3)點Q(a,b)的“絕對點”Q′是函數(shù)y=2x2的圖象上的一點.當0≤a≤2 時,求線段QQ′的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長為2cmP從點A出發(fā),1cm/s的速度沿AC向點C運動,到達點C停止同時點Q從點A出發(fā),2cm/s的速度沿ABBC向點C運動,到達點C停止,APQ的面積為ycm2),運動時間為xs),則下列最能反映yx之間函數(shù)關(guān)系的圖象是( 。

A. B.

C. D.

查看答案和解析>>

同步練習冊答案