【題目】已知:如圖,在⊿ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作于點E.
(1)證明:DE是⊙O的切線;
(2)若,AB=8,求DE的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“美麗紹興鄉(xiāng)土風(fēng)情知識”大賽預(yù)賽各參賽選手的成績?nèi)缦拢?/span>
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99.
通過整理,得到數(shù)據(jù)分析表如下:
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1)班 | 100 | m | 93 | 93 | 12 |
八(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)求表中m、n的值;
(2)依據(jù)數(shù)據(jù)分析表,有同學(xué)說:“最高分在(1)班,(1)班的成績比(2)班好”,但也有同學(xué)說(2)班的成績更好請您寫出兩條支持八(2)班成績好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的“算籌”.算籌是古代用來進行計算的工具,它是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式(如圖).
當表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間:個位、百位、萬位數(shù)用縱式表示;十位,千位,十萬位數(shù)用橫式表示;“0”用空位來代替,以此類推.例如3306用算籌表示就是,則2022用算籌可表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方形運動場被分隔成A,B,A,B,C共5個區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.
(1)列式表示每個B區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個長方形運動場的周長,并將式子化簡;
(3)如果a=40,c=10,求整個長方形運動場的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1( , ),B1( , ),C1( , );
(2)畫出點C關(guān)于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,四邊形ABDC是正方形,以A為頂點,作等腰直角三角形△AEF,∠EAF=90°,線段BE與CF之間的數(shù)量關(guān)系為:_____.(直接寫出結(jié)果,不需要證明)
(2)如圖②,四邊形ABDC是菱形,以A為頂點,作等腰三角形△AEF,AE=AF,∠BAC=∠EAF,(1)中結(jié)論成立嗎?若成立,請證明;若不成立,請說明理由.
(3)如圖③,四邊形ABDC是矩形,以A為頂點,作直角三角形△AEF,∠EAF=90°,AB=AC,AE=AF,當∠EAB=60°時,延長BE交CF于點G.
①求證:BE⊥CF;
②當AB=12,AE=4時,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,A(a,0)、B(0,b)、C(﹣a,0),且+b2﹣4b+4=0
(1)求證:∠ABC=90°;
(2)作∠ABO的平分線交x軸于一點D,求D點的坐標;
(3)如圖2所示,A、B兩點在x軸、y軸上的位置不變,在線段AB上有兩動點M、N,滿足∠MON=45°,下列結(jié)論:①BM+AN=MN;②BM2+AN2=MN2,其中有且只有一個結(jié)論成立.請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=,點E為AD的中點,線段BA繞點B順時針旋轉(zhuǎn)到BC(旋轉(zhuǎn)角小于180°),使BC∥AD.連接DC,BE.
(1)則四邊形BCDE是________,并證明你的結(jié)論;
(2)求線段AB旋轉(zhuǎn)過程中掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com