【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3),點(diǎn)B(﹣2,1),在x軸上存在點(diǎn)P到A,B兩點(diǎn)的距離之和最小,則P點(diǎn)的坐標(biāo)是 .
【答案】(﹣1,0).
【解析】
試題作A關(guān)于x軸的對(duì)稱點(diǎn)C,連接BC交x軸于P,則此時(shí)AP+BP最小,求出C的坐標(biāo),設(shè)直線BC的解析式是y=kx+b,把B、C的坐標(biāo)代入求出k、b,得出直線BC的解析式,求出直線與x軸的交點(diǎn)坐標(biāo)即可.
試題解析: 作A關(guān)于x軸的對(duì)稱點(diǎn)C,連接BC交x軸于P,則此時(shí)AP+BP最小,
∵A點(diǎn)的坐標(biāo)為(2,3),B點(diǎn)的坐標(biāo)為(﹣2,1),
∴C(2,﹣3),
設(shè)直線BC的解析式是:y=kx+b,
把B、C的坐標(biāo)代入得:
解得.
即直線BC的解析式是y=﹣x﹣1,
當(dāng)y=0時(shí),﹣x﹣﹣1=0,
解得:x=﹣1,
∴P點(diǎn)的坐標(biāo)是(﹣1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量山頂鐵塔AE的高,小明在27m高的樓CD底部D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿著A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)△PAD的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架2.5米長(zhǎng)的梯子AB 斜靠在一座建筑物上,梯子底部與建筑物距離BC 為0.7米.
(1)求梯子上端A到建筑物的底端C的距離(即AC的長(zhǎng));
(2)如果梯子的頂端A沿建筑物的墻下滑0.4米(即AA′=0.4米),則梯腳B將外移(即BB′的長(zhǎng))多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 “低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:
(1)填空:樣本中的總?cè)藬?shù)為 ;開私家車的人數(shù)m= ;扇形統(tǒng)計(jì)圖中“騎自行車”所在扇形的圓心角為 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(shí)(如圖2),求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板EFG測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊EG保持水平,并且邊EF所在的直線經(jīng)過點(diǎn)A.已知紙板的兩條直角邊EF=60cm,F(xiàn)G=30cm,測(cè)得小剛與樹的水平距離BD=8m,邊EG離地面的高度DE=1.6m,則樹的高度AB等于( 。
A.5m
B.5.5m
C.5.6m
D.5.8m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com