【題目】如圖是一座人行天橋的引橋部分的示意圖上橋通道由兩段互相平行并且與地面成37°角的樓梯AD、 BE和一段水平平臺(tái)DE構(gòu)成已知天橋高度BC≈4.8,引橋水平跨度AC=8

1求水平平臺(tái)DE的長度;

2若與地面垂直的平臺(tái)立枉MN的高度為3求兩段樓梯ADBE的長度之比

參考sin37°=0.60,cos37°=0.80,tan37°=0.75

【答案】(1)DE=1.6;(2)AD:BE=5:3

【解析】1)延長BEACF,∠BFC=∠DAC=37°

BC/FC=tan37°,∴FC=BC/tan37°=4.8/0.75=6.4

四邊形ADEF為平行四邊形,DE=AF=AC-FC=8-6.4=1.6

2)過DDG⊥AC,垂足為G,則DG=MN

DG/AD=sin37°∴AD=DG/sin37°=3/0.6=5

BC/BF=sin37°,∴BF=BC/sin37°=4.8/0.6=8

BE=BF-EF=BE-AD=8-5=3

∴ ADBE=53

利用解直角三角形求解

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P 為平行四邊形 ABCD 內(nèi)一點(diǎn),PB=PCBPC=90°,PAB=75°,若 AB=11,PD=14,則 PA 的長為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB,C的坐標(biāo)分別為(1,0),(01),(﹣1,0).一個(gè)電動(dòng)玩具從坐標(biāo)原點(diǎn)O出發(fā),第一次跳躍到點(diǎn)P1.使得點(diǎn)P1與點(diǎn)O關(guān)于點(diǎn)A成中心對稱;第二次跳躍到點(diǎn)P2,使得點(diǎn)P2與點(diǎn)P1關(guān)于點(diǎn)B成中心對稱;第三次跳躍到點(diǎn)P3,使得點(diǎn)P3與點(diǎn)P2關(guān)于點(diǎn)C成中心對稱;第四次跳躍到點(diǎn)P4,使得點(diǎn)P4與點(diǎn)P3關(guān)于點(diǎn)A成中心對稱;第五次跳躍到點(diǎn)P5,使得點(diǎn)P5與點(diǎn)P4關(guān)于點(diǎn)B成中心對稱;照此規(guī)律重復(fù)下去,則點(diǎn)的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DAB的中點(diǎn),DE⊥AB,∠ACE+∠BCE=180°,EF⊥ACACF,AC=12,BC=8,則AF=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)C為線段AB上任意一點(diǎn)(不與點(diǎn)A、B重合),分別以ACBC為一腰在AB的同側(cè)作等腰△ACD和△BCE,CACD,CBCE,∠ACD=∠BCE30°,連接AECD于點(diǎn)M,連接BDCE于點(diǎn)N,AEBD交于點(diǎn)P,連接CP

1)線段AEDB的數(shù)量關(guān)系為  ;請直接寫出∠APD  ;

2)將△BCE繞點(diǎn)C旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,探究線段AEDB的數(shù)量關(guān)系,并說明理由;求出此時(shí)∠APD的度數(shù);

3)在(2)的條件下求證:∠APC=∠BPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形都是正方形,點(diǎn)邊上,點(diǎn)在對角線上,若,則的面積是(  )

A.6B.8C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOC和∠BOC,OD平分∠BOC,OE平分∠AOC.

(1)請寫出一對相等的角;

(2)若∠AOC在∠BOC的外部,且∠AOB120°,如圖,其他條件不變,求∠EOD的度數(shù).從結(jié)果你能看出∠EOD與∠AOB有什么數(shù)量關(guān)系嗎?

(3)若∠AOCα,∠BOCβ(α,β都大于且小于180°,且αβ),其他條件不變,試求∠EOD的度數(shù)(結(jié)果用含α,β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC2,以AB為直徑的⊙O分別交BC、AC于點(diǎn)D、E,且點(diǎn)DBC的中點(diǎn).

1)求證:ABC為等邊三角形;

2)求DE的長;

3)在線段AB的延長線上是否存在一點(diǎn)P,使PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,以為圓心,任意長為半徑畫弧分別交、于點(diǎn),再分別以、為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn),連結(jié)并延長交于點(diǎn),則下列說法中正確的個(gè)數(shù)是( )

的平分線;②;③點(diǎn)的垂直平分線上;④

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案